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ABSTRACT 

Adaptive production systems are defined and u^^d to illustrate adaptive 

techniques in production system construction. A learning paradigm is des- 

cribed within the framework of adaptive production systems, and is applied 

to a simple rote learning task, a nonsense syllable association and discrim- 

ination task, and a serial pattern acquisition task. It is shown that with 

the appropriate production building mechanism, all three tasks can be 

solved using similar production systom learning techniques. 

The adaptive production systems are quite parsimonious; that is, the 

learning program is represented in exactly the same fashion as the information 

being learned.  Both are represented as production rules in a single production 

system. This eliminates the need for two types of control in the system; 

one for activating the learning mechanism and another foi accessing the 

information learned. In other words, the concepts learned are not passive, 

static structures which must be given a special interpretation, but rather 

are self-contained programs which are executed automatically in the course 

of executing the learning mechanism. 
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ADAPTIVE PRODUCTION SYSTEMS 

by D. A. Waterman 

This paper presents recent results in the design and use of adaptive or 

self-modifying production systems.  A production system (Newell and Simon, 

1972; Newell, 1973) can be thought of as simply a collection of production 

rules, that is, condition-action pairs, C => A, where the left side of each pair 

is a set of zonditions relevant to the contents of a particular data base or 

working memory and the right side is a list of actions, each of which can modify 

the contents of that memory.  The production systems to be discussed are written 

in PAS-II (Waterman and Newell, 1973; Waterman, 1973) and each is represented as 

a set of ordered production rules as illustrated below. 

C, => A, 

C2 •> A2 

C3 => A3 

The control cycle consists of selecting one production rule from the .et and 

executing its actions. The first rule (from top to bottom) whose conditions 

match the working memory is the one selected. After the actions associated 

with the selected rule are executed the cycle starts again, from the top. 

This process continues until no conditions match. 

An adaptive or self-modifying production system is defined to be one 

which, through its actions, can modify its own production lules. There are 

three principal ways such modification can take place:  by adding new rules, 

by deleting old rules, and by changing existing rules. The adaptive pro- 

duction systems to be described in this >aper use just one of these three 

modification techniques:  addition of new rules.  Thus the adaptive production 

I. 
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systems not only contain actions which can modify the contents of working 

memory but also acti, rt which can add new rules to the system.* 

We will new postulate a common machinery for performing a variety of 

learning tasks. This machinery consists of (1) a produc.ion system interpreter 

for ordered production systems. (2) a production system representation for 

learning programs. (3) production rule action- capable of constructing and 

adding new rules to the system, and (4) the learning technique of adding new 

production rules above error-causing rules to correct the errors. Three types 

of learning tasks are investigated: arithmetic, verbal association, and series 

completion. The primary purpose of the investigation is to define and clarify 

the machinery'  needed for these tasks and show how it can be implemented within 

an adaptive production system framework. 

The programs for all three tasks are written as short production systems 

which access a single working memory composed of an ordered set of memory 

elements. KTien production rules "fire." i.e.. their actions are executed, 

they modify working memory by adding, deleting, or rearranging memory elements. 

Since rules fire only when their conditions match nemory. such changes may 

cause different rules to fire and new memory modifications to be made. Thus 

the system cycles through various states, using working memory as a storage 

buffer for holding initialization data and inv.rmediate results. Most of the 

actions are designed only to modify working memory, however a few are able 

to modify the production system itself by removing elements from working mem- 

ory, assembling these elements into a production rule, and adding this pro- 

duction rule to the production system. These actions give the system its 

self-modification capability. 

*The production rules are not considered part of the data base or 
memory. 
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The arithmetic learning task is relatively simple.  It consists of learning 

to add or divide integers given only an ordering over the set of integers as 

initialization data. Whent'ie production system is given two integers to 

add, it uses the ordering to create a set of production rules which partially 

define the successor function for integers, and then uses this newly defined 

function to calculate the desired sum.  After each sum is calculated, other 

production rules are added which effectively define the addition table for 

integers.  Thus in the course of problem solving the system learns both the 

successor function and addition rules. 

The verbal association task involves learning pairs of nonsense syllables, 

such that given the first syllable of the pair the system can respond with the 

second.  The program which performs this task is essentially a production sys- 

tem implementation of EPAM (Feigenbaum, 1963).  Instead of growing an EPAM 

discrimination net, the system creates a set of production rules which are 

equivalent to such a net. Two implementations of EPAM are discussed, an ele- 

mentary one which exhibits stimulus generalization, and a more elaborate one 

which exhibits both stimulus and response generalization. 

The series completion task consists of presenting a short sequence of 

symbols, such as AABBAABB, and then requesting a prediction of what symbols 

should come next in the sequence.  The production systems for series com- 

pletion create production rules which represent hypotheses about which symbol 

contexts lead to which new symbols, i.^., "two A's always lead to a B." These 

rules, taken together, constitute the concept of the series and are used by 

the production systems to predict new symbols. Two types of series completion 

production systems are discussed.  The first handles simple series, that is, 

series which involve repetition and don't require knowledge about external 

alphabets; i.e., AMMAMMAMM. The second handles more complicated series which 

require the use of a next or prior relation on some alphabet, i.e., AABBCCDD. 
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The paper is organized as follows: section II contains a description 

of the nAS-II production system interpreter, section III describes adaptive 

production systems for arithmetic tasks, and section IV discusses production 

system simulations of EPAM. Section V describes production systems fov series 

completion tasks, and section VI contains concluding remarks about adaptive 

production systems. 

II.  PAS-II PRODUCTION SYSTEM 

PAS-II is an interactive information processing system designed to aid 

the user in analyzing verbal problem solving protocols. Within PAS-II the 

user may write production systems and have them executed by the PAS production 

system interpreter. This interpreter is modeled after PSG (Newell, 1972, 

1973) and will interpret ordered production systems that access multiple data 

bases or memories. 

Production rules in the PAS system consist of condition-action pairs, where 

the condition side is a set of conditions with implicit NEMBER and AND functions 

and the action side is an ordered list of independent actions. For example, 

a rule that would check memory STM to see if it contained both elements 

(A) and (B), and if so would deposit elements (C) and (D) nto STM would be 

written: 

(A) (B)  =>  (DEP  (C))  (DEP  (D)), (1) 

where the action DEP deposits its argument into memory. Also necessary is a 

definition of the initia'i contents of STM, such as: 

1.  STM = (A) (B). 

All the production systems described in this paper access only a single memory, 

STM. 

The control cycle of the PAS-II production system interpreter consists 

of two major mechanisms: 

 i  
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1. RECOGNIZE: a production rule (condition-action pair), whose 
conditions match (or satisfy) working memory is selected from 
the collection of mltS.  If no rule matches working memory 
the system halts. 

2. ACT: the actions (right-hand side) of the selected rule are 
executed, modifying working memory. 

A cycle in the system is defined to be a single RECOGNIZE-ACT sequence. 

REC0GNIZE- **  RECOGNIZE mechanism in the production system inter- 

preter selects a rule to be executed. When more than one rule matches the 

working memory a conflict occurs, since RECOGNIZE must produce a single rule 

for the ACT mechanism to work on.  Conflict resolution consists of applying 

some scheme which selects a particular rule from those that match memory. 

The only conflict resolution scheme used in the production systems in this 

paper is that of priority ordering. Thus the rule recognized is just the 

highest priority rule whose conditions match the data base. 

The match mechanism in PAS assumes the conditions are in implicit 

MEMBER and AM notation and scans the condition elements in order from left 

to right checking to see if each element is in the working memory. When all 

the condition elements in a rule match corresponding elements in memory, the 

memory elements are automatically brought to the front of memory (just 

before actions are executed) in the order specified in the rule. A memory 

element can match only one condition element in any rule and the order of 

the memory elements does not have to correspond to the order of the condition 

elements. For example, the conditions (A) (B) (A) will match the memory 

STM:  (B) (A) (A), but not the memory (A) (B). 

A condition element will match a memory element if the memory element 

contains all the items the condition element contains, in the same order, 

starting from the beginning of the memory element. Thus condition element 

(A T) will match memory elements (A T), and (A T [•) but not elements (A). 

(T A), or (T A T). 

- -^ 
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The match routine will search for the absence of a memory element if 

the condition element is preceeded by a minus sign (-). Thus the conditions 

(A) - (B) - (C) will match any memory which contains (A) but does not contain 

(B) and also does not contain (C). 

Free variables* can be used in the condition elements and are denoted 

xl, x2, .... xn.  When a match occurs each item in the memory element which 

corresponds to a variable is bound to that variable. Then when a Lound var- 

iable occurs in an action the value of the variable is used. For example, 

if we have memory STM:  (A) (B (L)) and the rule: 

(xl) (B x2)  =^   (DEP x2) , 

xl will be bound to A. and x2 to (L). The action taken will be to deposit 

(L) into memory. 

ACT. The ACT mechanism takes the rule specified by RECOGNIZE and executes 

all its actions, one at a time, in order going from left to right. Then the 

RECOGNIZE-ACT control cycle starts again and repeats until no rules match the 

data base. 

The specification of actions in a production system is critical since 

to a large extent it determines the grain of the system.  If the grain is too 

coarse the system still functions, but a single action may embody most of the 

interesting activity and thus obscure it from view. The criterion in defining 

actions seems to be co make the actions primitive enough so the trace of the 

production system will exhibit the activity deemed interesting. 

The PAS Production system actions to be described are primitive ones and 

fall into two main categories: basic actions and modification actions. Only 

the actions used in the exa nles to be presented are discussed here. For the 

complete set of actions available see the PAS-II Reference Manual (Waterman, 1973) 

•Variables which have restricted donains may also be defined (Waterman, 1973) 
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Basic Actions. The basic actions used in the examples are shown below 

with their definitions. 

(DEP a): Deposit a into front of memory. 

(REM a): Remove first occurrence of a from memory. 

(REP a b n) : Replace a with b in the nth element of memory. 

(SAY a):  Print a.  Any number of arguments are permitted. 

(CLEAR a): All elements in memory are cleared (erased) except a. 

(ATTEND):  Read from the terminal, permitting user to insert information 
into memory. 

(STOP):  Stop production system execution. 

The actions assume that memory is an ordered list of elements going from left 

to right.  Thus DEP places elements into memory at the left and REP counts 

elements starting from the left.  If the third argument to REP is omitted, 

the interpretation ^s to replace a with b in the first element of memory. 

Modification Actions. The modification actions are the embodiment of 

the mechanism which gives the production system its adaptive or self-modifying 

power. The total set of PAS modification actions are shown below with tv.eir 

definitions. 

(COND a):  Deposits (COND a) into memory and is exactly equivalent 
to (DEP (COND a)). 

(ACTION a): Deposits (ACTION a) into memorv and is exactly equivalent 
to (DEP (ACTION a)). 

(MARK a): Marks each element in memory that just matched the condition 
elements on the left side of the rule containing (MARK a). 
An element e is marked by changing it to (a e). 

(USED): This is a special case of MARK and is exactly equivalent to 
(MARK USED). 

(OLD): This is another special case of MARK and is exactly equivalent 
to (MARK OLD). 

(PROD a): Creates a production rule and inserts it into the production 
system. The rule is created from all memory elements marked 
(COND...) and (ACTION...). The new rule is  then inserted 
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just in front of the first production rule that contains, 
in either its condition or action, an element identical to 
any of the arguments of PROD,  If no such rule is ^und, the 
new rule is not inserted.  If PROD has no arguments the rule 
is inserted at the very beginning of the production system, 
if it has the argument END, it is inserted at the end of the 
system.  In all cases all memory elements marked (COND...) 
and (ACTION...) are removed from memory. 

Tne actions COND, ACTION, USED and OLD are clearly superfluous since 

the same effect can e obtained using DEP and MARK. They were implemented, 

however, to make the production rules more readable. 

The actions MARK and PROD are illustrated by the following simple example 

Assume the initial conditions shown below: 

STM:  (B) (A) (C) (ACTION (SAY DONE) (STOP)) (COND (C)) 

PS:  1.  -(B) => (DEP (B)) 

2   (A) (B) => (MARK COND) (PROD (A)) 

3.  (C) => (DEP (A)) 

When the production system PS is fired, rule 2 is the first to match STM. 

The action (MARK COND) marks (A) and (B) and memory becomes: 

STM:  (COND (A)) (COND (B)) (C) (ACTION (SAY DONE) (STOP)) (COND (C)). 

Then the action (PROD (A)) creates a production out of the elements marked 

COND and ACTION, removes these elements from STM, and puts the new production 

immediately above the first rule that contains (A), in this case rule 2. 

The resulting memory and production system are shown below. 

STM:     (C) 

PS:      1. - (B) => (DEP (B)) 

1.5.  (A) (B) (C) => (SAY DONE) (STOP) 

2. (A) (B) => (MARK COND) (PROD (A)) 

3. 1C) => (DEP (A)) 

After the insertion of rule 1.5 the production system execution continues, 

finally terminating with the firing of rule 1.5. 

__ b^BM - 
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Special Actions. The actions defined thus far are considered primitive 

actions.  It was necessary, however, to also define a small set of non-priai- 

tive, problem specific actions for use in the verbal association and series 

completion production systems. These were needed to make the production 

system traces reflect the activity deemed interesting. These special actions: 

SUCC, PERCEIVE, OBSSRVB, 0BSERVE1, 0BSERVE2, and PRODS, are described in 

detail in the next three sections. 

Predecessor and Successor Actions.  In the PAS production system predecessors 

and successors on letters and integers can be accessed implicitly by placing 

apost.ophes before or after variables in either the condition or action part 

of production rules.  Thus the value of xl' is the successor of the value 

of xl, and the value of "xl is the double predecessor of the value of xl. 

The implicit predecessor and successor actions were not used in the arithmetic 

or verbal association production systems, but were needed in the more complex 

series completion systems. Also, the explicit successor action (SUCC) was 

implemented to increase efficiency.  It changes every memory element with a 

number as the first item by replacing that number with its successor. 

III.  PRODUCTION SYSTEMS FOR ARITHMETIC TASKS 

Two simple production systems will now be described, one for performing 

addition of integers and one for division. These -systems were designed to 

illustrate adaptive production system techniques and to compare production 

system programming with more conventional programming methods.  They do not 

attempt to model data on human performance in these tasks. 

Addition. The production system for addition is shown in Figure 1.  It 

consists of five production rules, the first two providing initialization, the 

next two performing the addition, and the last adding rules which define the 

successor function. The initialization rules fire only once, at the beginning 

of the execution of the production system. 
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1. (READY) (ORDER XI)  =>   (REP (READY) (COUNT XI)) (ATTEND) 
2. (N Xi) - (NN) - (S NN)  =>   (DER (NN XI)) 
3. (COUNT XI) (M XI) (NN /2) (N X3) =>   (SAY X2 IS THE ANSWER) 

(COND (M XI) (N X3))   (ACTION (STOP)) 
(ACTION (SAY X2 IS THE ANSWER)) (PROD) (STOP) 

4. (COUNT) (NN)  ->   (REP (COUNT) (S COUNT)) (REP (NN) (S NN) 2) 
5. (ORDER XI X2)  «>   (REP (XI X2) {X2)) (COND (S X3 XI)) 

(ACTION (REP (S X3 XI) (X3 X2))) (PROD) 

Figure  1.    ADD:    A Production System for 
Addition of Integers 
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2.1 

2.2 

2.3 

2.4 

2.5 

When the action ATTEND is executed the system expects to be given two 

integers (a and b) in the form (M a) (N b).  It then calculates a + b and 

prints the answor. The algorithm used to calculate the answer is illustrated 

by the program below: 

add(m,n) = count ■•- o; nn <- n; 

LI if count = m then return(nn); 

count ♦ s(count); 

nn ■•- s (nn); 

go(Ll); 

Here count and nn are local variables and s is the successor function. Count 

is initialized to zero and nn to n. Then count and nn are continuously incre- 

mented by one, using the successor function, until count equals m. The 

answer is then nn. 

The ADD production system performs these steps with a few essential dif- 

ferences. First, it has no successor function, consequently it creates a pro- 

duction rule representation of the successor function by adding rules which 

tell it how to find the successor for particular integers. And second, once 

a sum is calculated it adds a rule that produces the answer directly the next 

time it is required. Thus it builds the addition table for integers. 

There is a direct mapping, however, between the code in (2) and that 

in Figure 1. Rules 1 and 2 in Figure 1 correspond to line 2.1 of the above 

program. Pule 3 corresponds to 2.2. and rule 4 to 2.5 and 2.4 above.  Rule 5 

has no correspondent in (2) since the above code assumes the existence of the 

successor function, while the production system code creates it. Note also 

that 2.5 above, the GOTO statement, has no correspondent in Figure 1.  In the 

ADD production system the function of the GOTO statement and label is handled 

--  - - - 
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by two mechanisms: control cycle repetition, which permits unlimited looping; 

and appropriate memory modification, which in this case makes rules 1 and 2 

inoperative. 

A trace of the ADD production system solving the problem 4 + 2 is shown 

in Appendix I. Memory is assumed to initially contain two things:  a ready 

signal (READY) and an ordering over the set of integers (ORDER 0 12 3 4 5 

6 7 8 9).* Notice that the system only adds successor rules when they are 

needed for the computation. The second time the system is given 4 + 2 it 

calculates it directly from the partial addition table just created.  When 

given other problems, such as 2 + 1, the si^.cesso! rules previously acquired 

are remembered and used. 

Division.  The production system for division is shown in Figure 2. This 

time there are six production n-.les;  the first two provide initializ^lon, 

the next three perform the division, and the last one creates successor and 

predecessor rules when noeded. 

As in the ADD system, the user gives the DIVIDE system two integers (a and b) 

in the form (M a) (N b), and the system calculates a f b, including the remainder. 

This calculation is done according to the following program: 

3.1 divide(m,n) = count ♦ o; ans ■<- o; remain ♦ m; 

3.2 LI _if count = n then [ans ♦ s(ans); count ♦ o; remain ♦ mj 

3'3 else [it ■ = o then return(ans,remain);      (3) 

3.4 m -H p(m); count ♦ s(count)]; 

3.5 go(Ll); 

Here count, ans, and remain are local variables, s is the successor function, 

and p is the predecessor function.  Basically, count is being incremented 

*This ordering should extend to 18 for the system to handle addition of all single 
digit integers.  It was kept to 9 for the sake of brevity in the trace. 

_-_ 
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1. (READY)  ->   (REP (READY) (COU^ Q;) (DER (ANS 0)) (ATTEND) 
2. (M XI) - (REMAIN)  «>   (DEP (REMAIN Xl)) 
3. (ANS) (COUNT XI) (REMAIN X3) (N XI) (M X2)  »>   (REP (ANS) (S ANS)) 

(REP (X!) (0) 2) (REP (X3) (X2) 3) 
4. (M 0) (ANS XI) (REMAIN X2) - (S) «>  (SAY XI WITH REMAINDER X2) (STOP) 
5. (M) (COUNT) - (S)  ->   (REP (M) (P M)) (REP (COUNT) (S COUNT) 2) 
6. (ORDER XI X2) - (GO)  «>   (REP (XI X2) (X2)) (COND (P X3 X2)) 

(ACTION (REP (P X3 X2) (X3 XI))) (PROD (GO)) (COND (S X3 XI)) 
(ACTION (REP (S X3 XI) (X3 X2))) (PROD (READY)) 

Figure 2.    DIVIDE:    A Production System for 
Division of Integers 

—_ — —* 
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by one while m is being decremented hy  one until count = n. Then ans is 

incremented, count reset to zero and the process continues until m = o. 

The DIVIDE production system uses the above algorithm but has no successor 

or predecessor functions.  Instead it creates production rule representations 

of these functions by adding the appropriate rules when needed. As before, 

there is a direct mapping between the DIVIDE production system code and the 

LISP-like code shown in (3) above. The initialization rules, 1 and 2 in Figure 2, 

correspond to 3.1 above.  Rule 3 correspond« to 3.2, 4 to 3.3, and 5 to 3.4. 

Again, the production building rule, 6, has no correspondent in (3) since the 

above program creates no new code. Note that the if-then-else statement in (3) 

is quite easily mapped into the DIVIDE production system because of the priority 

ordering of the production system rule?  A trace of the DIVIDE system on the 

problem 3 -f 2 is shown in Appendix II. Again memory initially contains a ready 

signal and an ordering over the set of integers. To obtain the correct answer 

"1 with remainder 1" the system added the predecessor and successor rules shown. 

The production systems for arithmetic are self-modifying but not really 

adaptive in the strict sense of the word. This is because they create new 

rules, not on the basis of external feedback, but rather on the basis of 

internal information, i.e., the ordering on the set of integers. Furthermore 

rules are added only when needed to solve the problem at hand. This is a 

good example of an explicit view of predetermined developmental potential. 

The system has the capacity to develop the addition table or the successor 

function on integers but does so only when the environment demands it. 

__^ä^mtmMm 
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IV.  PRODUCTION SYSTEM IMPLEMENTATIONS OF EPAM 

EPAM (Feigenbaum, 1963;  Feigenbaum and Simon, 1964) is a computer pro- 

gram which simulates verbal learning behavior by memorizing three-letter 

nonsense syllables presented in associate pairs or serial lists.  The program 

learns to predict the correct response when given a stimulus syllabic by 

growing a discrimination bet composed of nodes which are tests on the values 

of certain attributes of the letters in the nonsense syllables.  Responses are 

stored at the terminal nodes, and are retrieved by sorting the stimuli down 

the not. A typical paired associate training sequence for this verbal 

learning task is shown in Figure 3. 

Two production system implementations of EPAM will new be discussed, each 

using only the actions described in Section II plus a special action called 

PERCEIVE. This is a problem-specific action which recognizes the type and 

location of individual letters in a syllable, as shown below. 

(PERCEIVE ab): Breaks syllable a into individual letters and tags 
these letters with b and a number specifying their 
order in the syllable. 

For example, the action (PERCEIVE PAX ?) when executed adds the elements 

(1 P ?) (3X ?) (2 A ?) to memory, indicating that the first letter in the 

syllable was P, the third X, and the second A.  The elements are arranged 

first, third, second, to reflect the serial position effect in verbal learning 

(Deese and Kaufman, 1957). 

The purpose of presenting the production system implementations of EPAM 

is to show the relation between discrimination nets and ordered production 

rules and to demonstrate the use of the modification actions in a verbal 

learning situation. 
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Stimulus 

PAX 

BEK 

CIT 

BUK 

NAL 

REB 

NOJ 

Response 

CON 

LUQ 

DER 

MAB 

LEQ 

MOL 

FED 

Figure 3.  Faired Associate Training Sequence for Verbal 
Learning Task. 
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EPAM1- The first inylenientation, called EPAM1, is shown in Figure 4. 

Rules 1 and 2 are initialization T.ules only, the response and learning 

mechanisms are embodied in the last 5 rules.  This simple version of EPAM 

grows a production system which is analogous to a discrimination net with 

tests for stimulus letters (i.e., "is the 3rd letter R?") at the intermediate 

nodes and complete responses at the termin il nodec.  Consequently, the 

system can exhibit retroactive inhibition and stimulus generalization but 

not response generalization (Feigenbaum. 1963). 

The operation of E'AMI will be described by using an annotated listing 

(shown below) of the trace of the program learning two pairs of syllables: 

PAX-CON and PUM-JES. The program output is in upper case, the user input, 

after the ATTEND function, is in lower case. 

»fire 
2 TRUF IN PS 

OUTPUT FOR (ATTEND STIM) - (dep (stim pax» 
STM: (STIM PAX) (READY) 

1 TRUE IN PS 
STM: (1 P ?) (3 X ?) (2 A ?) (STIM PAX) 

6 TRUE IN PS 

T 

OUTPUT FOR (ATTEND RESP) - (dep (resp con)) 
STM: RESP CON) (REPLY ?) (1 P ?) (3 X ?) (2 A ') 

(STIM PAX) 

Initially STM contains the signal (READY), which causes rule 2 to fire 

and the system to ask for the stimulus.  Once the stinulus (STIM PAX) is 

obtained, rule 1 fires, adding the perceived stimulus components to me-nory as 

shown above. Now rule 6 is the first to match STM. As it fires it prints a 

question mark as the system's reply to the stimulus (i.e., it doesn't have 

anything associated with the syllable PAX), adds this reply to memory, and asks 

for the correct response. 

— ■ - ■ 
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1. (READY) (STIM XI)   =>   (REM (READY)) (PERCEIVE XI ?) 
2. (READY)  =>   (ATTEND STIM) 
3. (REPLY) - (RESP)  ->   (ATTEND RESP) 
4. (REPLYXl)-(RESPXl)  =>   (REP REPLY WRONG) 
5. (USED XI) (WRONG X2)  ■>   (REP USED COND) 
6. - (RESP)  ->   (DEP (REPLY ?)) (SAY ?) (ATTEND RESP) 
7. (XI X2 ?) (RESP X3) (WRONG X4) ->  (COND (XI X2 ?)) 

(ACTION (USED) (DEP (REPLY X3)) (SAY X3)) (PROD (SAY X4)) tSTOP) 

Figure 4.    EPAM1:    A Production System 
Implementation of EPAM 

—m —m 
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4 TRUE IN PS 
STM: (WRONG ?) (RESP CON) (1 P ?) (3 X ?) (2 A ?) 

(SUM PAX) 

7 TRUE IN PS 
NOW INSERTING 
(IP?)   ->  (USED) (DEP (REPLY CON)) (SAY CON) 
ON LINE    5.5 

STM: (IP?) (RESP CON) (WRONG ?) (3 X ?) (2 A ?) 
(STIM PAX) 

Since there is now a reply in memory  (?)  that does not match the correct 

response   ^CON)  rule 4 matches and changes the  label  REPLY to WRONG.    Finally 

rule  7 matches memory with the variables bound as  follows:     xl-1,  x2=P, 

x3=CON,   and x4=?.     Thus when 7 is  fired it  adds   (COND  (1   P ?))   and 

(ACTION   (USED)   (DEP  (REPLY CON))   (SAY CON))  to memory,   removes  them from 

memory to create a new rule,  and inserts that rule in  front of the first rule 

that contains   (SAY ?),   in this case rule 6. 

«initialize fire 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) - (dep (stim pum)) 

STM: (STIM PUM) (READY) 

1 TRUE IN PS 
STM: (1 P ?) (3 M ?) (2 U ?) (STIM PUM) 

5.5 TRUE IN PS 

CON 

STM: (REPLY CON) (USED (1 P ?)) (3 M ?) (2 U ') 
(STIM PUM) 

Before the second pair of syllables  is presented,  memory is  initialized 

back to its original contents:     (READY),  and the system is  fired.    Again rules 

2 and 1 match and are fired in the process of obtaining and perceiving the 

stimulus.     But now the new rule,  5.5,  matches memory and causes  (IP?) 

to be marked USED,  and the system to reply CON and add the reply to memory. 

This is an example of stimulus generalization:    the system confused PUM with 

^ 1 __ . 1 tmm 
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PAX since  it was only noticing first  letters. 

3 TkUE IN PS i 
OUTPUT FO^ (ATTEND RESP) ■ (dep (resp ies)) 

STM: (RtSP JES) (REPLY CON) (USED (l P O (3 M ?) 
(2 U ?) (STIM PUM) 

A TRUE IN PS 
STM: (WRONG CON) (RESP JES) (USED (1 P ?)) (3 M ri) 

(2 U ?) (STIM PUM) 

5 TRUE IN PS 
STM: (COND (IP?)) (WRONG CON) (RESP JES) (3 M ?) 

•      (2 U ?) (STIM PUM) 

7 TRUE IN PS 
NOW INSERTING 
(3 M ?) (1 P ?)   -5   (USED) (DEP (REPLY JES)) (SAY JES) 
ON LINE    5.3 

STM: (3 M ?) (RESP JES) (WRONG CON) (2 U ?) 
(STIM PUM) 

Now memory contains a reply but no response, so rule 3 matches and 

elicits the correct response (JES) from the user. Rule 4 fires, since the 

reply differs from the response, marking the reply wrong. Next rule 5 fires, 

changing the USED  label to a COND label.  Finally rule 7 is reached and 

matches with the variables bound as: xl = 3, x2=M, x3=Ji:S, and x4=CON. When 

the mle is fired it now creates a new -rule with two condition elements, one 

from the COND already in memory and one from the COND inserted by rule 7 

itself. Note that this rule was inserted just above the previous rule that 

led to the error, thus insuring that in this ordered system it will be 

examined first. The two rules just added are: 

(3 M ?) (1 P ?) => (USFD) (DEP (REPLY JES)) (SAY JES) 

(1 P ?) => (USED (DEP (REPLY CON)) (SAY CON) 

It should be clear that PAX will now elicit the response CON, and PUM the 

response JES, as desired. 

The stimulus-response pairs given to EPAM1 for a test of paired-associate 
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verbal learning are those of Figure 3,  There were three training trials, and 

on the third trial the system made no errorj.  The output produced by the program 

is shown in Figure 5, and the trace of the test is shown in Appendix III. 

Th<j rules learned by the system are shown in Figure 6a in a shorthand notation. 

These rules are equivalent to the discrimination net shown in Figure 6b. Note 

that the condition elements are analogous to intermediate mdes and the response 

elements to the terminal nodes in the net. 

EPAM2. The second implementation of EPA';, called hPAM2, is shown in 

Figure 7.  This more complete version of EPAM grows a production system sim- 

ilar to the one produced by EPAM1. except that the productions are analogous to 

a net in which response cues rather than complete responses are stored in some 

of the terminal nodes. These cues (i.e., C_N) are retrieved by dropping the 

stimulus th-^ugh the net, and are then themselves dropped through the net ro 

retrieve t. j responses stored in other terminal nodes. The system exhibits 

retroactive inhibition, stimulus generalization, and response generalization, 

zz  «ell as stimulus-response confusion (replying with a stimulus item instead 

of a response item). 

Appendix IV gives a trace of EPAM2 learning tne stimulus-response pairs 

of Figure 3.  The output produced during the three training trials is shown 

in Figure 8.  There were two instances of stimulus generalization, two of 

response generalization, one of both stimulus and response generalization, 

and two of stimulus-response confusion. 

The production rules learned by EPAM2 and the corresponding discrimination 

net are shown in shorthand notation in Figures 9 and 10 respectively. Note 

♦Conditions, like (1 P), are elements denoting a letter and its location in 
the syllable, and are ordered (first, third, second) according to syllable 
location. Actions are response words like CON, or partial response cues like 

(1 M). 

a»aiwb_i»__ __ —- 
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STIMULUS REPLY 1 REPLY 2 REPLY 3 RESPONSE 

PAX ? CON CON CON 

BEK ? MAB (SG) LUQ LUQ 

CIT ? DER DER DER 

BUK LUQ (SG) MAB MAB MAB 

NAL ? LEQ LEQ LEQ 

REB ? MOL MOL MOL 

NOJ LEQ (SG) PED PED PED 

Figure 5.     EPAM1    Output  for three Training Trials 
(SG indicates a stimulus generalization error) 

- __^_1 __ 
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(1  P)   => CON 

(1  B)(3 K)(2 E)  => LIJQ 

(1  B)(3 K)  => MAB 

(1  B)   => LUQ 

(1  C)   => DER 

Cl N)(3 J)  => PED 

(1 N)   => LEQ 

(1 R)  => MOL 

23. 

Production Rules Learned by EPAM1 
(in shorthand notation) 

PED LEQ    MOL 

b.    Equivalent Discrimination Net 

Figure 6.     Production Rules Learned by EPAM1 

__-_^_ 
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1. (READY) (STIM XI)  =>   (REM (READY)) (PERCEIVE XI ?) 
2. (READY)  =>   (ATTEND STIM) 
3. (REPLY) - (RESP)  »>   (ATTEND RESP) 
4. (REPLYX1)-(RESPX1)  =>   (REP REPLY WRONG) 
5. (REPLY XI)(RESP XI)  =>   (STOP) 
6. (USED) (TEST XI) - (TEST X2)  =>   (REP USED USED*) 
7. (TEST XI) (TEST X2) (X3 X4 ?)  =>   (REM (X3 X4 ?)) 
8. (TEST XI) (TEST X2) - (R-GEN)  =>   (DEP (REPLY XI) (R-GEN)) (SAY XI) 
9. - (RESP)  =>   (DEP (REPLY ?)) (SAY ?) (ATTEND RESP) 

10. (RESP XI) - (X2 X3 RESP)   ->   (PERCFIVE XI RESP) 
11. (WRONG) (TEST X1) (STIM XI)- (R-GEN)  -->   (DEP (R-GEN)) 
12. (OLD XI) (R-GEN)  =>   (REP OLD COND) (DEP (HOLD XI)) 
13. (USED XI) (USED*) (R-GEN)  =>   (REP USED COND) (DEP (HOLD XI)) 
14. (R-GEN) (COND (XI X2 ?)) (XI X2 RESP)  =>   (REM (XI X2 RESP)) 
15. (XI X2 RESP) (RESP X3) (WRONG X4) - (DONE)  «>   (COND (XI X2 ?)) 

(ACTION (OLD) (DEP (REPLY X3)) (SAY X3)) (PROD (SAY X4) (TEST X4)) (DEP (DONE)) 
16. (USED* XI)  «>   (REP USED* COND) 
17. (OLD) (DONE) - (TEST)  «>   (REP OLD COND) 
18. (R-GEN) (HOLD (XI X2 ?))  =>   (REM (HOLD (XI X2 ?))) (ACTION (DEP (XI X2 ?))) 
19. (R-GEN) (XI X2 RESP) (STIM X3) (WRONG X4)  =>   (ACTION (DEP (TEST X3))) 

(ACTION (USED) (DEP (XI X2 ?))) (PROD (DEP (TEST X3))) (STOP) 
20. (XI X2 ?) (X3 X4 RESP) (STIM X5) (WRONG X6)  «>   (COND (XI X2 ')) 

(ACTION (USED) (DEP (X3 X4 ?)) (DEP (TEST X5))) (PROD (SAY X6)) (STOP) 

Figure  7.    HPAM2:    A Production System 
Implementation of EPAM 

■ i 
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I 

STIMULUS REPLY 1 REPLY 2 REPLY 3 RESPONSE 

PAX ? CON CCN CON 

BEK ? MAB (SG) LUQ LUQ 

CIT CON (SR) DER DER DER 

BUK LUQ (SG) MAB MAB MAB 

NAL ? LUQ (RG) LEQ LEQ 

REB ? MAB (RG) MOL MOL 

NOJ LUQ (SG RG) PAX (SR) PED PED 

Figure 8. EPAM2 Output for Three Training Trials 
(SG 
RG 
SR 

stimulus generalization error, 
response generalization error, 
stimulus-response confusion). 

■ 



pr ,',ILI" wm*m**m^wmrmwvwt« ■■ ■'* 

«■■■■■■■■■■ 

26. 

(1 D) => DER 
(1 C)(3 T) •> (1 D) 

(1 C) = > CON 
(1 P)(3 D) = > PED 

(1 P) => (1 C) 
(1 L)(3 Q) => LEQ 

(1 L) => LUQ 
(1 B)(3 K)(2 E) => (1 L) 

(1 MJ(3 L) = > MOL 
(1 M) = > MAB 

(1 B)(3 K) => (1 M) 
(1 P) = > PED 

(1 N)(3 J) => (1 P)(3 D) 
(1 N)(3 J) => (1 P) 

(1 L) = > LUQ 
(1 B) = > d L) 
(1 L) = > LEQ 
(1 N) = > (1 L)(3 Q) 
(1 N) = > (1 L) 
(1 M) = > MOL 
(1 R) = > (1 M)(3 L) 
(1 R) = > (1 M) 

Figure 9.     Production Rules Learned by EPAM2 
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that the path through the net from the top node to a terminal node corresponds 

directly to the sequence of conditions tested in the production system to 

obtain a response. 

EPAM2, illustrated in Figure 7, is an extremely compact piece of code 

which performs a sizable amount of information processing.  Its power comes 

from the strong pattern matching capabilities inherent in the production 

system interpreter and from the primitive but highly useful memory modification 

and system building actions employed.  Its compactness is due. in part, to the 

use of ordered production rules, since much information concerning rule appli- 

cability is implicit in the location of the rules.* 

V.  PRODUCTION SYSTEMS FOR SERIES COMPLETION TASKS 

The series completion task has long been considered a learning task, but 

a very complex one having little in common with more fundamental learning 

tasks such as learning to add or learning to associate pairs of syllables. 

Computer models of series completion (Simon and Kotovsky, 1963; Klahr and 

Wallace. 1970; Williams, 1972; Hunt and Poltrock, 1974) have been complex programs 

with structures quite dissimilar from the structures of more basic learning 

models, such as EPAM.** r*re an attempt is made to provide a common structure 

for these learning tasks  The essence of their commonality is (1) an ordered 

production system representation of what is learned, and (2). the technique 

of adding new production rules above the error-causing rules to correct the errors. 

Unordered production system implementations of EPAM (Rychener, 1975) tend 
to require twice as many rules as EPAM2. 

The Hunt and Poltrock model is described as a collection of production systems 
However, these systems are non-adaptive and do not represent the newly learned 
concept m production system form. 

! 

 —. 
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Simple Series Comiiletion 

The first production systems to be described are designed to solve simple 

repetition series completion problems, i.e.. problems which can be solved 

using only the same relation.  Thus problems involving alphabets are excluded 

since they generally require the use of a nex^ or ^rior relation on the alphabet, 

The extension of this approach to problems requiring other relations will be 

discussed later. 

Basic Learning Techntqua.  The learning technique used by the series 

completion production system is quite simple.  Production rules are created 

such that the total set of rules represents a hypothesis about what symbols 

come next given a current context of symbols. T^e hypothesis is tested by 

checking the given series to see if the hypothesis (i.e.. the current rules) 

correctly predicts each symbol in the series given the partial series up 

to that symbol. Mien every symbol in the problem series is correctly 

predicted, the system uses the hypothesis and the entire problem series to 

predict the next symbol in the series. 

An example will illustrate the details of this procedure.  Note that 

for this example the letters are considered unique, unordered symbols, that 

is they have no referent in an underlying alphabet.  Consider the letter 

series ACABAC.  First the series is partitioned as shown: 

A / C A B A C . (4) 

The  current context A is matched against the current hypothesis to obtain 

a prediction for the next letter. At this point there are no hypotheses, 

except the default one which always says the next letter is the first letter 

in the series (in this case A).  Since the prediction is incorrect* (C is 

The predictions made by the default hypothesis are always considered incorrect. 
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actually next,not A)    a production rule is added above the existing rules. 

The condition side is the  first  letter of the current context   Cthe  first 

letter going right to left  from the vertical  line in  4).    The action side is 

the  letter immediately following the current context.    Now there are two rules 

which constitute the hypothesis: 

A ^ C 

xl ♦ A, 

which say in effect,  "if the  first   letter in the current context  is A then 

predict C.  otheivise predict A."    Now the series  is repartitioned as: 

A C / A B A C (5) 

and again the current context,  this  time A C,  is matched against  the 

hypothecs.    Sxnce the default  rule again makes the prediction it  is considered 

an error and a new rule is  added as before to produce: 

C -»- A 

A -► C 

xl  -«■ A      . 

Now the series  is repartitioned as: 

A C A /  B A C (6) 

and the second rule incorrectly predicts that the next  letter is C rather 

than  B.    A new rule is added, with just enough of the current  context to 

distinguish it  from the context  in the rule that  led to the error.    Thus 

the   rules become*: 

i- 
C A -»■ B 

C > A 

A -> C 

xl  -> A 

♦Notice that the new rule is added above all existing rules rather than above the 
error-causing rule.    For simple series completion tasks this  simplification will 
surrice. 
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The series is repartitioned as: 

A C A B / A C (7) 

which leads to a prediction by default rule and thus the addition of the 

rule B -* A. The final partitioning leads to the correct prediction C, thus 

no new rule is added. The rules are now: 

B -* A 

C A -► B 

C -> A 

A ■> C 

xl -> A 

Since the end of the series has been reached and errors were made the 

partition-prediction process starts over with the series again partitioned 

as in 4-7. This time every prediction is correct so the learning phase 

(the phas^ in which new rules are added) is terminated. Now the entire 

series ACAEAC is used as the context to predict the next letter.  In this 

case the prediction is A. To extend the series the context plus predictions 

are used as context, thus ACABACA leads to a prediction of B.  The extended 

series predicted by these rules is ACABAC A B^ A C A B ... 

Letter Series. The production system for simple lettci series completion 

tasks is shown in Figure 11. The actions used are the same used in the pre- 

vious systems except for OBSERVE (rather than PERCEIVE), and the addition 

of SUCC, the successor function on digits. The special-purpose OBSERVE 

action is defined below. 

(OBSERVE ab):  Breaks word a into individual letters and tags these 
letters with b. 
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1. (READY) (SERIES XI)  »>   (REP READY CONT) 
(OBSERVE XI ?) 

2. (READY)  ->   (ATTEND SERIES) 
3. (XI ?) - (LOG)  »>   (COND (1 X4 ?)) 

(ACTION (DEP (NEXT XI))) (PROD Et ID) 
(DEP (LOG XI)) 

4. (0 XI ?)  «>   (SUCC) 
5. (ERROR) (SERIES XI) (LOG X2) - (X3 ?) -> 

(GLEAR (SERIES XI) (LOG X2)) (DEP (KtADY)) 
6. (NEXT XI)-(X2?) -> (SAY XI) 

(DEP (MATGH) (XI ?)) (STOP) 
7. (NEXT XI) (USED) (AGTION (USED) (DEP (NEXT XI))) 

- (MATGH) «> (DEP (MATGH)) 
8. (USED) - (MATGH) - (ERROR) »> (DEP (ERROR)) 
9. (USED (XI X2 ?)) (NEXT) => (REP USED OLD) 
10. (XI X2?) (NEXT)- (DONE) «> 

(REP (XI X2 ?) (OLD (XI X2 ?))) (DEP (DONE)) 
11. (OLD (XI X2 ?)) => (REP OLD GOND) 

(DEP (XI X2 ?)) 
12. (NEXT XI) (MATGH) (SERIES X2) •> 

(REP (NEXT XI) GONT) (REM (MATGH) (DONE)) 
(PROD (SERIES X2)) 

13. (LOG XI) (NEXTX2) 
(AGTION (USED) (DEP (NEXT X3))) O (REP XI X3) 
(REP (NEXT X2) GONT 2) (REM (DONE)) 
(PROD (NEXT XI)) 

14. (XI ?) (GONT) (X2 ?) -> (REP XI (0 XI)) 
(REM (GONT)) (AGTION (USED) (DEP (NEXT X2))) 

15. (XI ?) (GONT) .> (REP XI (0 XI)) (REM (GONT)) 

Figure 11.  Production System for Simple Series 
Completion Task. 

,-J 
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OBSKRVE was designed for the series completion production systems and 

takes a letter series like ABABA and notices inJividual letters.  Tor example. 

(OBSERVE ABABA ?) puts (A ?) (B :) (A ?) (B ?) (A ?) into memory so that 

individual letters can be recognized.  The OBSERVE and PERCEIVE actions are 

used rather than a set of more primitive actions because the primary interest 

here is not how words are perceived but rather how new information processing 

rules can be adaed to an existing system. 

The first three rules of Figure 11 are initialization rules:  they cause 

the series to be read in and the default rule to be created.  Rule 13 fires 

when an erroneous prediction is made, auding a new r-ile tc the system.  Rule 12 

fires when a correct prediction is made, removing all COND's and ACTION'S from 

memory without adding a new rule*. 

A tiace of the system solving the series ABAb is shown in Appendix V. 

The rules learned for this series were: 

B -•• A 

A - B 

Appendix VI  shows a trace of the system solving the more compl 

ABAACAABA.     The rules   learned are: 

ex series 

C A A -•• B 

C A - A 

C ■» A 

A A -► C 

•Here PROD does not add a rule because it cannot find any current rule that 
contains the argument, i.e., (SERIES...). 
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B A ♦ A 

B - A 

A -^ B 

which predict the extension of the series to be: 

ABAACAABA A C A ... . 

Notice that the rule A- B is conditionally redundant*, that is, for this 

particular series it cannot be accessed.  Figure 12 shows a number of simple 

letter series together with the rules learned by the letter series produc- 

tion system.  Each set of rules represents the concept of the series, and the 

predictions made by them are similar to those obtained using the template model 

of Klahr and Wallace (1970). 

Complex Letter Series Completion 

A production system will now be described which can solve complex letter 

series completion tasks, i.e.. letter series that may require the use of 

successor or predecessor operations on the alphabet. 

Extended Learning Technique. Th* learning technique used here is similar 

to the one just described for simple series completion, in that production rules 

are created which represent hypotheses about which symbols come next given a 

current context of symbols. The major difference is that rules are generalized 

before they are added to the system. For example, in the simple series comple- 

tion program with context C A and next letter B the specific rule C A- B 

is added. But here a generalized version of this rule is added which takes 

into account the letter relationships which might be relevant. The problem 

is that the mles can be generalized in a number of different ways, each way 

being a hypothesis about which letter relationships are relevant for this" 

s^tem316™111 (1970) f0r a discussion of redundancy in ordered production 
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Series 

1.  ABAABAAB 

2.  AAABAAABAA 

Rules Prediction 

B A ^ A AAB 

B -► A 

A -► B 

B A A  - A ABA 

B ^ A 

A A -* B 

A - A 

3.  CAABACAAB 

4.  ABABCABAB 

B A -» C 

B -♦ A 

A A -► B 

A -» A 

C •♦ A 

B A  B -♦ C 

A B -► A 

C •*■ A 

A -► B 

ACA 

CAB 

Figure 12.  Rules Learned by Simple Letter Series 
Compleuon Production System (Redundant rules not shown). 

_ ■ ^ ä 
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particular series. The variations on C A -•■ B are shown below. 

xl A - B 

C xl H- B 

xl A -> 'xl 

C Xl* xl' 

xl x2 -> B 

xl "xl -► B 

xl x2 1- 'xl 

xl "xl - 'xl 

"Hie first rule above is interpreted "any letter followed by A leads to 

B", the second is "C followed by any letter leads to B", the third "any 

letter followed by A leads to the predecessor of that letter", etc. 

If every time a new rule was added, the system arbitrarily picked a 

generalization, intending to backtrack to try the other generalizations when 

an error was discovered, a huge tree of possibilities would be generated, 

making the problem virtually unsolvable.  The solution to this dilemma is to 

use tree-pruning heuristics to limit the number of possible generalizations 

at each step. The production system to be described uses one very powerful 

heuristic which will be called the template heuristic. 

The template heuristic consists of hypothesizing the period size, and 

recognizing only relations between letters which occupy the same relative 

position within the period, while generalizing on all letters. *OT  example, 

if given the series ACABA with assumed period 2, then the relations looked 

for are shown by the arrows below. 

A C ! A B i A 

For context CA and next letter B only one generalized rule, xl x2 -^ 'xl, 

can be obtained. For the same series with assumed period 3 the relations looked 

mmm 
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for are: 

A C A   I   B A 

and only the rule xl x2 -► B can be obtained.  For assumed period 1 the relations 

are: 

A I C ,' A I B I A 
•   i   I   i 

and only xl "xl * 'xl can be obtained. These rules are all examples of 

inter-period rules, since in each case the context and next letter are not 

all located within the same period. 

Predecessor and successor relations between letters are always represented 

by letting the variable stand for the first letter and the variable plus 

appropriate apostrophes stand for the second letter, i.e., A and C would be 

xl and xl". while C and A would be xl and "xl. The same relation can be 

represented in either of two ways. The first, total generalization, involves 

substituting the same variable for each letter. The second, partial generali- 

zation, consists of using the letter itself rather than a variable. Thus if 

given the context A B A C the relation between alternate letters could be 

represented as xl x2 xl x2'   (total generalization) or as A x2 A x2, (partial 

generalization).  The system will generate correct concepts regardless of 

whether it uses total or partial generalization on same.  But concepts for 

simple repetition series tend to be mere concise when total generalization is 

used, consequently, a combination of both is used in the actual implementation.* 

•The first inter-period rule added during each new period size hypothesis uses 
total generalization on same. The rest use partial generalization. 

- — 
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Complex series completion learning proceeds as follows: period size 

is hypothesized and the series goes through a partition-prediction cycle 

as in the simple series completion technique.  The differences are that 

generalized rules are added, and the partition-prediction process is not 

repeated until every prediction is correct; it is performed just once for 

each period hypothesis. A period hypothesis is considered false if: 

(1) no relation can be established between letters which 

occupy the same relative position within the period, 

or  (2)  the number of inter-period* rules added exceeds the 

current period size hypothesis. 

When the current period size hypothesis is found to be false, a period 

size one greater than the previous is hypothesized, and the entire partition- 

prediction process starts over from the beginning.  An example will clarify 

this procedure.  Consider the series ABHBCICD.  The initial period size 

hypothesis is 1 and the initial partitioning is shown bei ow, 

A /iB;H:B:c!i;c;D 
• ■ i i ■ ■ i 

The system already contains the default rule xl -* xl, which is always 

considered to generate an error. Thus the context A is '.xopped through the 

rules and the erroneous prediction A is made.  Now the system takes the 

context A and next letter B to form A -•• B, generalizes it to get xl -•■ xl', 

and places it above the error-causing (default) rule to produce: 

xl >xl'    (1) 

*Intra-period rules are not counted (since they are not needed to extend 
the series) and are always considered to lead to an error. 
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The next partitioning is 

A:B /JHJBlciitcio 
I   < I I I I I 

which produces the context AB and next letter H.  The context matches rule 

(1) but the prediction is C. Thus the system adds a new rule, a generalized 

version of A B -•• H.  But this makes the number of rules added (2) exceed 

the period hypothesis (1) so a new hypothesis of 2 is generated.  Partitioning 

starts over as: 

•  i  i 

A / B.'H B;C IlC D . 
I   i   i 

and the rules again become just the default rule xl -»■ xl. The context A 

leads to a prediction of A (from the default rule) and an intra-period 

rule, the generalization of A - B, is added.  The rules are now: 

xl -•■ B (initialization). 

The intra-period rules are called initialization rules because they are not 

needed to extend the series, only to generate it from scratch. The next 

partitioning is 

A B /[H B;C I;C D , 
I    <   I 

and the context B matches the first rule, leading to the erroneous prediction 

B. Now the rule AB - H is generalised, but since no relation between A 

and H can be found* the period 2 hypothesis fails. Partitioning starts over 

as: 

A / B H;B C I;C D 

and the rules again become just the Jcfault rule. Context A generates 

a prediction of A which leads to the intra-period rule A -► B being 

»The system does not search for relations highe- than triple predecessor 
or successor. 

      ...,.—.-^..^ 
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generalized and added to produce: 

xl -»• B (initialization). 

The next partitioning is 

AB/ H;B C lie D 
i I 

and context B matches the top rule, leading to the erroneous prediction B. 

Now the intra-period rule A B ^ H is generalized ard added to give: 

xl x2 > H (initialization) 

xl -•■ B (initialization). 

The next partitioning is 

A B H / ; B C I; C D 

and context BH matches the top rule leading to the prediction H. Now the 

inter-period rule A B H ^ B is generalized and added above the error- 

causing rule to give: 

xl x2 x3 -*■ xl1  (1) 

x,i x2 * H   (initialization) 

xl -•■ B   (initialization). 

The next partitioning 

A B HJB / C I*C D 

produces the context A B H B. and the B H B matches the xl x2 x3 of rule 

(1) to produce the correct prediction C.  Since the prediction was correct 

no rules are added *nd the partitioning continues 3 more times, each producing 

the correct prediction. The partition-prediction cycle is now complete, and 

the entire series is taken as context to produce the next letter prediction. 

Rule (1) fires and predicts J. The concept of the series is now embodied 

in the numbered rules (the inter-period rules). Thus we say that 

xl x2 x3 * xl» is the concept learned by the system, and the series predicted 

by this concept is ABHBCICDJDEK .... 

- MM 
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Production System.  The production system for complex letter series 

completion is shown in Figure 15. The template heuristic is embodied in 

the special action (PRODS abed). The argument b is the hypothesized period 

(initially 1). and c is the ,eries itself.  As in PROD, memory elements 

marked (COND ...) and (ACTION ...) are combined and removed from memory to 

create a new rule.  This rule is generalized according to the template 

heuristic and placed immediately above the first existing rule that contains 

the argument a.  The argument d is the number of rules already added to the 

production system by PRODS.  The action PRODS is clearly nor. primitive and 

could have been written as a separate production system which used the action 

PROD.  It was written as an action rather than a production system so as 

not to obscure the production modification techniques being illustrated. 

Rules 1 and 2 in Figure 13 provide initialization, rule 16 is the 

default rule, and rule 13 adds productions to the system.  Appendix VII 

shows the trace of this production system on the series CDCDCD and ABMCDMEF. 

The concept learned for CDCDCD (in shorthand notation) is: 

xl x2 -•• xl . 

Note that this is the concept of any simple repetition series of period 2. 

not simply the concept of the series CDCDCD.  In general, any simple 

repetition series of length n. will be learned as xl x2 x3 ... xn - xi. 

Figure 14 shows concepts learned using the 15 scries from Simon 5 Kotovsky 

(1963). The correct predictions are made in all cases, but in series 8 the 

system generated the concept of a series with period 6 rather than the simpler 

concept of a series with period 3.  In general, this learning technique will 

successfully solve letter series completion problems that can be solved by 

Klahr's template model (Klahr %  Wallace. 1970), if glven enough of the serxes. 

However, this particular algorithm does not guarantee finding the concept of 

the shortest period, and may instead, as in series 8. find multiples of the 

shortest period.  For more on serial pattern acquisition see Waterman (1975). 
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1. (READY) (SERIES XI)  »  (REP READY CONT) 
(DER (PNUM 2) (COUNTS 0)) (OBSERVES XI T) 

2. (READY)  «>   (ATTEND SERIES) (DEP (PERIOD 1)) 
3. (COUNT) (COUNTS XI)  •>   ;REM (COUNT)) 

(REP XI XT) 
4. (OXI ?)  ->   (SUCC) 
5. (FAIL) (PERIOD XI) (SERIES X2)  ->   (ERASE) 

(CLEAR) (DEP (READY) (PERIOD XT) (SERIES X2)) 
6. (PERIOD XI) (COUNTS XT) (SERIES X2)  «> 

(ERASE) (CLEAR) 
(DEP (READY) (f'ERIOD XT) (SERIES X2)) 

7. (NEXT XI) - (X2 ?) - (ACTION) O (SAY XI) 
(DEP (MATCH) (X. ?)) (STOP) 
(NEXT XI) (USED) (ACTION (USED) (DEP (NEXT XI))) 
- (MATCH) - (ERRO^) «> (DEP (MATCH)) 

9. (XI X2?)(NEXT)- (DONE) O 
(DEP (OLD (XI X2 ?))) (UFP (DONE)) 

10. (USED (XI X2 ?)) «> (REP USED OLD) 
(DEP (XI X2 ?)) 

11. (OLD (XI X2 ?)) » (REP OLD COND) 
12. (MATCH) (NEXT XI) (SERIES X2) (LOC X3) »> 

(REP (NEXT XI) CONT 2) 
(REM (MATCH) (DONE) (LOC X3)) (PROD (SERIES X2)) 

13. (LOC XI) (NEXT X2) (PERIOD X3) (SERIES X4) 
(COUNTS X5)  =>   (REM (LOC XI) (DONE) (ERROR)) 
(REP (NEXT X2) CONT) (PRODS (LOC XI) X3 X4 X5) 

14. (CONT) (XI ?) (PNUM X2) (X3 ?)  «> 
(REP XI (0X1)2) (REP X2 X2• 3) (REM (CONT)) 
(ACTION (USED) (DEP (NEXT X3)) (DEP (LOC X2))) 

15. (CONT) (Xi ?)  •>   (REP XI (0X1)2) 
(REM (CONT)) 

16. (1 XI ?)  ->   (DEP (NEXT XI) (LOC 1)) 

Figure 13. Production System for Complex Series 
Completion Task. 
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Series 

1. CDCDCÜ 

2. AAABBB 

3. ATBATAATB 

4. ABMCDMEF 

5. DEFGHFCH 

6. QXAPXBQXA 

7. ADUACUAEUABUAF 

8.  MABMBCMCÜM 

9. URTUSTU 

10. ABYABXAB 

11. RSCDSTDE 

12. NPAOQAPR 

13. WXAXYBY 

14. JKQRKLRS 

15. PONQMMM 

Rules 

xl x2 ■► xl 

xl x2 x3 - xl' 

xl x2 x3 x4 x5 x6 ■> xl 

xl M x3 xl'' - M 

xl x2 x3 - xl'' 

xl x2 x3 x4 ■• xl ' 

xl x2 x3 x4 x5 x6 - xl 

xl U A x4 x5 x6 'xl U A ^ x4, 

U A x3 x4 x5 x6 U A -> >x3 
A x2 x3 x4 x5 x6 A -«• x2, 

xl U x3 x4 x5 x6 'xl -♦ U 
xl x2 x3 x4 x5 x6 ■» xl 

M x2 x3 x4 x5 x6 M 
xl x2 M x4 x5 x6 xl" x2" 

xl x2 x3 x4 x5 x6 xl" -. 
xl x2 x3 x4 x5 xo - 

U x2 x5 U - 
xl x2 x3 -» 

B x2 x3 B - 
xl x2 x3 ■* 

- x?« x; 
M 
x2" 
Xl 

x2, 

xl 

,x2 
xl 

xl x2 x5 x4 -► xl 

xl A x3 xl' •+ A 
xl x2 x5 -*■ xl' 

xl x2 x3 •♦ xl' 

xl x2 x3 x4 *♦ xl' 

xl x2 x3 •■ •xl 

43. 

Prediction 

CDC 

CCC 

ATA 

MGH 

FGH 

PXB 

UAA 

DEM 

TTU 

WAB 

TUE 

AQS 

ZCZ 

LMS 

LML 

Figure 14.  Rules Learned by Complex Series 
Completion Production System 
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VI.  CONCLUSION 

The PAS-11 production system has been described and used to illustrate 

adaptive techniques in production system construction.  The focus has been 

on the machinery needed to implement self-modification in n  production system 

framework.  It has been demonstrated that a production building action 

(PROD) is the crucial one needed for such ar. implementation, and that its use 

in an ordered production system leads to relatively short, straight-forward 

programs. 

Moreover, it has been demonstrated that within a production system 

representation, using the actions illustrated, one can create a learning 

paradigm which appHes to (1) very sxmple rote learning tasks such as learning 

the addition table. (2) more involved learning tasks like nonsense syllable 

association and discrimination, and (3) complex induction tasks such as 

inducing the concept of a serial pattern.  In all three cases the paradigm 

consisted of creating an ordered production system representation of the 

concept learned by adding new production rules (or hypotheses) above the 

error-causing rules. 

The adaptive production systems described in this paper are by nature 

quite parsimonious; that is. the system which learns the concept is repre- 

sented in exactly the same fashion as the concept being learned. They are 

both represented as production rules in a single production system. This 

eliminates the need for having two different types of control in the system; 

one for activating the learning mechanism and another for accessing the con- 

cept learned. Another way of stating this is that the concepts learned 

are not passive, static structures which must be given a special interpre- 

tation, but nther are ^elf-contained programs which are executed auto- 

matically in the course of executing the learning mechanism. 
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It should be stressed that much of the system simplicity SCCMI in the 

production system examples is duo to using ordered production rules with 

powerful pattern matching capabilities.  With ordered rules the system can 

use the simple heuristic "add a new rule immediately above the one that made 

the error" to great advantage, is illustrated by the EPAM and scries 

completion examples. 

Finally, the analogy between an ordered production system and a dis- 

crimination net has been made clear, i.e., that the conditi )n elements 

are non-terminal nodes in the net, the action elements are terminal nodes, 

and the searches through the conditions in the production system are 

analogous to the paths from the top clement to the terminal elements in the net, 
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APPENDIX I.  Trace of ADD Production System. 

• memory display pi display 
MEMOW MODE 

)   S fM . (READY) (ORDER 01^J45578 9) 

PS MODE 
1. (READV) (ORDER XI) .>  (REP (READY) (COUNT Xl» 

(ATTEND) 
2 (N XI) - (NN) - (S NN)  •>   (OEP (NN XI)) 
3 (COUNT X1) (M X1) (NN X2) (N X3) •> 

(SAY X2 IS THE ANSWER) (COND (M XI) (N X3)) 
(ACTION (STOP)) (ACTION (SAY X2 IS THE ANSWER)) 
(PROD) (STOP) 

4 (COUNT) (NN)  •>   (REP (COUNT) (S COUNT)) 
(REP (NN) (S NN) 2) 

5 (ORDER XI X2)  •>   (REP (XI X2) (X2)) 
(COND (SX3X1)) 
(ACTION (REP (S X3 XI) (X3 X2))) (PROD) 

• fir* 
1 TRUE IN PS 

OUTPUT FOR (ATTEND) - (dap (m 4)(n 2)) 
STM  (N 2) (M 4) (COUNT 0) 

(ORDER OI234S678 9) 

2 TRUE IN PS 
STM (NN 2) (N 2) (M 4) (COUNT 0) 

(ORDER 012345678 9) 

4 TRUE IN PS 
STM  (S COUNT 0) (S NN 2) (N 2) (M 4) 

(ORDER 012345678 9) 

5 TRUE IN PS 
NOW INSERTING 
(S X3 0)   •>   (REP (SX3 0)(X3 1)) 
ONLINE    0 5 

STM (ORDER 12345678 9) (S COUNT 0) (S NN 2) 
(N 2) (M 4) 

05 TRUE IN PS 
STM (COUNT 1) (ORDER 1 2 3 4 5 6 7 8 9) (S NN 2) 

(N 2) (M 4) 

5 TRUE IN PS 
NOW INSERTING 
(S X3 1)  •>   (REP(SX3 1)(X3 2)) 
ON LINE   0 25 

STM (ORDER 2 3 4 5 6 7 3 9) (COUNT 1) 'S NN 2) 
(N 2) (M 4) 

5 TRUE IN PS 
NOW INSERTING 
(S X3 2)   •>   (REP (S X3 2) (X3 3)) 
ON LINE   0 13 

STM  (ORDER 3 4 5 6 7 8 9) (COUNT 1) (S NN 2) (N 2) 
(M4) 

0 13 TRUE IN PS 
STM (KN 3) (ORDER 3 4 5 6 7 8 9) (COUNT 1) (N 2) 

(M4) 

4 TRUE IN PS 
STM (S COUNT 1) (S NN 3) (ORDER 3 4 5 6 7 8 9) 

(N 2) (M 4) 

1-1. 

0 25 TRUE IN PS 
STM (COUNT 2) (S NN 3) (ORDER 3 4 5 6 T 8 9) (N 2) 

(M 4) 

5 TRUE IN PS 
NOW INSERTING 
(S X3 3)   •>   (REP (S X3 3) (X3 4)) 
ON LINE   005 

STM  (ORDER 4 5 6 7 8 9) (COUNT 2) (S NN 3> (N 2) 
(M 4) 

005 TRUE IN PS 
STM (NN 4) (ORDER 4 5 6 7 8 9) (COUNT 2) (N 2) 

(M4) 

4 TRUE IN PS 
STM (S COUNT 2) (S NN 4) (ORDER 4 5 6 7 8 9) (N 2) 

(M 4) 

0 13 TRUE IN PS 
STM (COUNT 3) (S NN 4) (ORDER 4 5 6 7 8 9) (N 2) 

(M4) 

5 TRUE IN PS 
NOW INSERTING 
(S X3 4)   •>   (REP (SX3 4) (X3 5» 
ON LINE   0 03 

STM (ORDER 5 6 7 8 9) (COUNT 3) (S NN 4) (N 2, 
(M 4) 

0 03 TRUE IN PS 
STM (NN 5) (ORDER 5 6 7 8 9) (COUNT 3) (N 2) (M 4) 

4 TRUE IN PS 
STM (S COUNT 3) (S NN 5) (ORDER 5 6 7 8 9) (N <;) 

(M 4) 

0 05 TRUE IN PS 
STM  (COUNT *' iS NN S) (ORDER 5 6 7 8 9) (N 2) 

(M 41 

5 TRUE IN PS 
NOW INSERTING 
(S >:3 5)  •>   (REP (S X3 5) (X3 6)) 
ON LINE   002 

STM (ORDER 6 7 8 9) (COi,,,.,T •) ß NN 5) (N 2) (M 4) 

002 TRUE IN PS 
STM (NN 6) (ORDER 6 / 8 9) (COUNT 4) (N 2) (M 4) 

3 TRUE IN PS 

6 IS THE ANSWER 

NOW INSERTING 
(M 4) (N 2)  •>   (SAY 6 IS THE ANSWER) (STOP) 
ONLINE   001 

STM  (COUNT 4) (M 4) (NN 6) (N 2) (ORDER 6 7 8 9) 

•display 

001 (M 4) (N 2)  •>   (SAY 6 IS THE ANSWER) (STOP) 
002 (SX3 5)   •>   (REP (S XJ 5) (X3 6» 
003 (S X3 4) -> (REP (S X3 4) (X3 5)) 
0 05 (S X3 3) •> (REP (S X3 3) (X3 4)) 
0.13 (S X3 2)  •>   (REP (S X3 2) (X3 3)) 
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0 25 (SX3 1)  .>   (REP(SX3 1) (X3 2)) 
0 5 (SX3 0)  •>   (REP (S X3 0) (X3 1)) 

1 (READY) (ORDER XI)  •>   (REP (READY) (COUNT XI)) 
(ATTEND) 

2 (N XI) - (NN) - (S NN)  ->   (DEP (NN XI)) 
3 (COUNT XI) (M XI) (NN X2) (N X3)  •> 

(SAY X2 IS THE ANSWER) (COND (M XI) (N X3)) 
(ACTION (STOP)) (ACTION (SAY X2 IS THE ANSWER)) 
(PROD) (STOP) 

4 (COUNT) (NN)  .>   (REP (COUNT) (S COUNT)) 
(REP (NN) (S NN) 2) 

5 (ORDER XI X2>  •>   (REP (XI X2) (X2)) 
(C0ND(SX3XJ)) 
(ACTION (REP (S X3 XI) (X3 X2))) (PROD) 

• initialize firt 
INITIALIZED 

1 TRUE IN PS 
OUTPUT FOR (ATTEND) - (dep (m 4)(n 2)) 

STM (N 2) (M 4) (COUNT 0) 
(ORDER 012345678 9) 

00J TRUE IN PS 

6 IS THE ANSWER 

STM (M 4) (N 2) (COUNT 0) 
(ORDER 012345678 9) 

• initializ« fir« 
INITIALIZED 

1 TRUE IN PS 
OUTPUT FOR (ATTEND) . (dep (m 2)(n 1» 

STM (N 1) (M 2) (COUNT 0) 
(ORDER 012345678 S) 

1-2. 

3 IS THE ANSWER 

NOW INSERTING 
(M 2) (N 1)   ->   (SAY 3 IS THE ANSWER) (STOP) 
ON LINE 0 005 

STM  (COUNT 2) (M 2) (NN 3) (N 1) 
(ORDER 012345678 9) 

•display 
0 005 (M 2) (N 1) 
001 (M 4) (N 2) 
002 (S X3 5)   -> 
003 (S X3 4) -> 
005 (S X3 3) -> 
0 13 (S X3 2) -> 
0 25 (S X3 1)   -> 
05  (S X3 0)   •> 

•>   (SAY 3 IS THE ANSWER) (STOP) 
• >   (SAY 6 IS THE ANSWER) (STOP1 

(REP (S X3 5) (X3 6)) 
(REP (S X3 4) (X3 5)) 
(REP (S X3 3) (X3 4)) 
(REP (S X3 2) (X3 3)) 
(REP(SX3 1)(X3 2)) 
(REP(SX3 0)(X3 I» 

(REP (READY) (COUNT X.1. 1 (READY)(ORDER XI) 
(ATTEND) 

2 (N XI) - (NN) - (S NN)  ->  (DEP (NN XI)) 
3 (COUNT X1) (M X1) (NN X2) (N X3)  .> 

(SAY X2 IS THE ANSWER) (COND (M XI) (N X3)) 
(ACTION (STOP)) (ACTION (SAY X2 IS THE ANSWER)) 
(PROD) (STOP) 

4 (COUNT) (NN)   ->   (REP (COUWT) (S COUNT)) 
(REP (NN) (S NN) 2) 

5 (ORDER XI X2)  •>   (REP (XI X2) (X2)) 
(COND (S X3 XI)) 

(ACTION (REP (S X3 XI) (X3 X2))) (PROD) 

2 TRUE IN PS 
STM (NN 1)(N 1) (M 2) (COUNT 0) 

(ORDER 012345678 9) 

4 TRUE IN PS 
STM (S COUNT 0) (S NN 1) (N 1) (M 2) 

(ORDER 01?345678 9) 

0 25 TRUE IN PS 
STM (NN 2) (S COUNT 0) (N 1) (M 2) 

(ORDER 012345678 9) 

0 5 TRUE !NPS 

STM (COUNT 1)(NN2)(N 1) (M 2) 
(ORDER 012345678 9) 

4 TRUE IN PS 

STM (S COUNT 1) (S NN 2) (N 1) (M 2) 
(ORDER 012345678 9) 

0 13 TRUE IN PS 
STM (NN3)(SC0UNT 1)(N 1)(M2) 

(ORDER 012345678 9) 

0.25 TRUE IN PS 

STM (COUNT 2) (NN 3) (N 1)(M2) 
(ORDER 012345678 9) 

3 TRUE IN PS 

J 
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APPENDIX  II.    Trace of DIVIDE Production System. II-l. 

• memory diaplay pi display 

MEMORY MODE 
1 STM - (READY) (ORDER 012345678 9) 

PS MODE 
I. (READY)  .>   (REP (READY) (COUNT 0)) 

(DEP (ANS 0)) (ATTEND) 
2 (M XI) - (REMAIN) ->   (DEP (REMAIN XI)) 
3 (ANS) (COUNT Xl) (REMAIN X3) (N XI) (M X2) 

•>   (REP (ANS) (S ANS)) (REP (XI) (0) 2) 
(REP (X3) (X2) 3) 

4 (M 0) (ANS XI) (REMAIN X2) - (S)  ■> 
(SAY XI WITH PEMAINDER X2) (STOP) 

5 (M) (COUNT) - (S) •>  (REP (M) (P M)) 
(HEP (COUNT) (S COUNT) 2) 

6. (ORDER XI X2) - (GO) ->  (REP (Xl X2) (X2)) 
(COND (P X3 X2)) 
(ACTION (REP (P X3 X2) (X3 XI))) (PROD (GO)) 
(COND (SX3X1)) 
(ACTION (REP (S X3 XI) (X3 X2))) (PROD (READY)) 

• fir« 
1 TRUE IN PS 

OUTPUT FOR (.«/TEND) - (d.p (m 3)(n 2)) 
STM  KA 2, KM 3) (ANS 0) (COUNT 0) 

(ORDER 012345678 9) 

2 TRUE IN PS 
STM  (REMAIN 3) (M 3) (N 2) (ANS 0) (COUNT 0) 

(ORDER 012345678 9) 

5 TRUE IN PS 
STM (P M 3) (S COUNT 0) (REMAIN 3) (N 2) (ANS 0) 

(ORDER 012345678 9) 

6 TRUE IN PS 
NOW INSERTING 
(PX3 1)   ■>   (REP(PX3 1)(X3 0)) 
ONLINE    5 5 
NOW INSERTING 
(SX3 0)   •>   (REP(SX3 0)(X3 D) 
ON LINE    05 

STM: (ORDER 1 2 3 4 5 6 7 8 9) (P M 3) (S COUNT 0) 
(REMAIN 3) (N 2) (ANS 0) 

0 5 TRUE IN PS 
STM  (COUNT 1) (ORDER 1 2 3 4 5 6 7 8 9) (P M 3) 

(REMAIN 3) (N 2) (ANS 0) 

6 TRUE IN PS 
NOW INSERTING 
(PX3 2)   ->   (REP (PX3 2)(X3 1» 
ON LINE    5 8 
NOW INSERTING 
(SX3 1)   ->   (REP(SX3 1)(X3 2)) 
ON LINE    0 8 

STM  (ORDER 2345678 9) (COUNT 1) (P M 3) 
(REMAIN 3) (N 2) (ANS 0) 

6 TRUE IN PS 
NOW INSERTING 
(PX3 3)  ->   (HEP (P X3 3) (X3 2)) 
ON LINE    59 
NOW INSERTING 
(S X3 2)   •>   (REP (S X3 2) (X3 3)) 

ONLINE    0 9 
STM  (ORDER 3 4 5 6 7 8 9) (COUNT 1) (P M 3) 

(REMAIN 3) (N 2) (ANS 0) 

59 TRUE IN PS 
STM  (M 2) (ORDER 3 4 5 6 7 8 9) (COUNT 1) 

(REMAIN 3) (N 2) (ANS 0) 

5 TRUE IN PS 
STM (P M 2) (S COUNT I) (ORDER 3 4 5 6 7 8 9) 

(REMAIN 3) (N 2) (ANS 0) 

0 8 TRUE IN PS 
STM (COUNT 2) (P M 2) (ORCER 3 4 5 6 7 8 9) 

(REMAIN 3) (N 2) (ANS 0) 

5 8 TRUE IN PS 
STM (M 1) (COUNT 2) (ORDER 3 4 5 6 7 8 9) 

(REMAIN 3) (N 2) (ANS 0) 

3 TRUE IN PS 
STM (S ANS 0) (COUNT 0) (REMAIN 1) (N 2) (M 1) 

(ORDER 3 4 5 6 7 8 9) 

0 5 TRUE IN PS 
STM (ANS 1) (COUN'T 0) (REMAIN 1) (N 2) (M 1) 

(ORDER 3 4 5 6 7 8 9* 

5 TRUE IN PS 
STM (P M 1) (S COUNT 0) (ANS 1) (REMAIN 1) (N 2) 

(ORDER 3 4 5 6 7 8 9) 

0 5 TRUE IN PS 
STM  (COUNT 1) (P M 1) (ANS 1) (REMAIN 1) (N 2) 

(ORDER 3456789) 

5 5 TRUE IN PS 
STM  (M 0) (COUNT 1) (ANS 1) (REMAIN 1) (N 2) 

(ORDER 3 4 5 6 7 8 9) 

4 TRUE IN PS 

1 WITH REMAINDER 1 

STM (M 0) (ANS 1) (REMAIN 1) (COUNT 1) (N 2) 
(ORDER 3 4 5 6 7 8 9) 

• > 
•display 

0 5 (S X3 0) 
08 (S X3 1)   •> 
0 9 (S X3 2)   •> 

1   (READY) 

2 
3 

(REP (S X3 0)(X3 IN 
(REP (S X3 1)(X3 2)) 
(REP (S X3 2) (X3 3)) 
(REP (READY) (COUNT 0)) 

(DEP (ANS 0/) (ATTEND) 
(M XI) - (REMAIN)  •>   (DEP (REMAIN Xl» 
(ANS) (COUNT XI) (REMAIN X3) (N Xl) (M X2) 
■>   (REP (ANS) (SANS)) (REP (XI) (0)2) 

(REP (X3) (X2) 3) 
4 (M 0) (ANS XI) (REMAIN X2) - (S)  •> 

(SAY XI WITH REMAINDER X2) (STOP) 
5 (M) (COUNT) - (S)  •>   (REP (M) (P M)) 

(REP (COUNT) (S COUNT) 2) 
5 5 (P X3 1) •> (REP (P X3 1) (X3 0)) 
5.8 (P X3 2) -> (REP (P X3 2) (X3 1» 
5 9 (P X3 3)   •>   (REP IP X3 3) (X3 2)) 

6 (ORDER XI X2) - (GO)  ->   (REP (XI X2) (X2)) 
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(COND (P X3 X2)) 

(ACTION (REP (P X3 X2) (X3 XI))) (PROD (GO)) 
(COND (SX3X1)) 

(ACTION (REP (S X3 XI) (X3 X2))) (PROD (READY)) 

• inidahz« fire 
INITIALIZED 

1 TRUE IN PS 
OUTPUT FOR (ATTEND) . (d.p (m 2)(n 1» 

STM  (N 1) (M 2) (ANS 0) (COUNT 0) 
(ORDER 012345678 9) 

2 TRUE IN PS 

STM  (REMAIN 2) (M 2) (N 1) (ANS 0) (COUNT 0) 
(ORDER 012345678 0) 

5 TRUE IN PS 

STM  (P M 2) (S COUNT 0) (REMAIN 2) (N 1) (ANS 0) 
(ORDER 0 12 3456789) 

0 5 TRUE IN PS 

STM  (COUNT 1) (P M 2) (REMAIN 2) (N 1) (ANS 0) 
(ORDER 012345678 9) 

5 8 TRUE IN PS 

STM  (M 1) (COUNT 1) (REMAIN 2) (N l) (ANS 0) 
(ORDER 012345678 9) 

3 TRUE IN PS 
STM  (S ANS 0) (COUNT 0) (REMAIN 1) (N 1) (M 1) 

(ORDER 01 2345678 9) 

0 5 TRUE IN PS 

STM  (ANS 1) (COUNT 0) (REMAIN 1) (N 1) (M 1) 
(ORDER 0 12345678 9) 

5 TRUE IN PS 

STM  (P M I) (S COUNT 0) (ANS 1) (REMAIN 1) (N 1) 
(ORDER 012345678 9) 

0 5 TRUE IN PS 

STM  (COUNT 1) (P M 1) (ANS 1) (REMAIN 1) (N 1) 
(ORDER 012345678 9) 

5 5 TRUE IN PS 

STM (M 0) (COUNT 1) (ANS 1) (REMAIN 1) (N 1) 
(ORDER 012345678 9) 

3 TRUE IN PS 

STM  (S ANS 1) (COUNT 0) (REMAIN 0) (N 1) (M 0) 
(ORDER 012345678 9) 

0 8 TRUE IN PS 

STM (ANS 2) (COUNT 0) (REMAIN 0) (N 1) (M 0) 
(ORDER 012345678 9) 

4 TRUE IN PS 

2 WITH REMAINDER 0 

STM (M 0) (ANS 2) (REMAIN 0) (COUNT 0) (N 1) 
(ORDER 012345678 9) 

•display 

0 5 (SX3 0)  •>   (REP (S X3 0) (X3 11] 

II-2. 

0 8 (S X3 1) •> (REP (S X3 1) (X3 2)) 
0 9 (S X3 2)  •>   (REP (S X3 2) (X3 3)) 

1 (READY)   ->   (REP (READY) (COUNT 0)) 
(DEP (ANS O) (ATTEND) 

2 (M Xl> - (REMAIN)   •>   (DEP (REMAIN XI)) 
3 (ANS) (COUNT XI) (REMAIN X3) (N XI) (M X2) 

• >   (REP (ANS) (S ANS).) (REP (XI) (0) 2) 
(REP (X3) (X2) 3) 

4 (M 0) (ANS XI) (REMAIN X2) - (S) •> 
(SAY XI WITH REMAINDER X2) (STOP) 

5 (M) (COUNT) - (S)  •>   (REP (M) (P M» 
(REP (COUNT) (S COUNT) 2) 

5 5 (P X3 1) -> (REP (P X3 1) (X3 0)) 
5 8 (P X3 2) •> (REP (P X3 2) (X3 D) 
5 9 (P X3 3)  •>   (REP (P X3 3) (X3 2)) 

6 (ORDER XI X2) - (GO)  •>   (REP (XI X2) (X2)) 
(COND (P X3 X2)) 
(ACTION (REP (P X3 X2) (X3 XI))) (PROD (GO)) 
(COND (S X3X))) 
(ACTION (REP (S X3 XI) (X3 X2))) (PROD (READY)) 

! 
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APPENDIX III. Trace of hPAMl Production System. III-l. 

• mamory display pi display 
MEMORY MODE 

1   STM . (READY) 

PS MODE 

1 (READY) (STIMXn  .>   (REM (READY)) 
(PERCEIVE XI ?) 

2 (READY)  .>   (ATTEND STIM) 
3 (REPLY) - (RESP)  .>   (ATTEND RESP) 

4 (REPLY XI)-(RESP XI)  .>   (REP REPLY WRONG) 
5 (USED XI) (WRONG X2) •>   (R£P USED COND) 
6 - (RESP)  •>   (DEP (REPLY ')) (SAY ') 

(ATTEND RESP) 
7 (XI X2 ») (RESP X3) (WRONG X4)  .> 

(COND (XI X2 ?)) 

(ACTION (USED) (DEP (REPLY X3)) (SAY X3)) 
(PROD (SAY X4)) (STOP) 

• fir« 

2 TRUE IN PS 

OUTPUT FOR (ATTEND STIM) . (ft, (.,(m pi)<)) 

STM (STIM PAX) (READY) 

I TRUE IN PS 

STM (I P') (3 X') (2 A ») (STIM PAX) 

6 TRUE IN PS 

OUTPUT FOR (ATTEND RESP) . (dap (,aap con)) 
STM (RESP CON) (REPLY ») (l P >) (3 x ») (2 A ') 

(STIM PAX) 

4 TRUE IN PS 

STM (WRONG ') (RESP CON) (I P ') (3 X ') (2 A ') 
(STIM PAX) 

7 TRUE IN PS 
NOW INSERTING 

OP')  ->   (USED) (DEP (REPLY CON)) (SAY CON) 
ON LINE    55 

STM (IP ») (RESP CON) (WRONG ') (3 X ') (2 A ') 
(STIM PAX) 

•diaplay 5-6 

5 (USED XI) (WRONG X2)  .>  (REP USED COND) 
5 5 (I P i») .> (USED) (DEP (REPLY CON)) (SAV CON) 
6 - (RESP) .> (DEP (REPLY ?)) (SAY ») 

(ATTEND RESP) 

•initlaliz« fira 
INITIALIZED 

2 TRUE IN PS 

OUTPUT FOR (ATTEND STIM) . (dap (.!,„, bah)) 
STM (STIM BtK, a.EADY) 

1 TRUE IN PS 

STM (I B ?) (3 K ?) (2 E') (STIM BE«) 

6 TRUE IN PS 

OUTPUT FOR (ATTEND RESP) . (dap (ra.p I*,)) 

STM (RESP LUQ) (REPLY ') (I B ') (3 K ') (2 E ') 
(STIM BEK) 

4 TRUE IN PS 

STM  (WRONG ') (RESP LUQ) (1 B ?) (3 K ') (2 E ») 
(STIM BEK) 

7 TRUE IN PS 
NOW INSERTING 

(IB')  •>   (USED) (DEP (REPLY LUQ)) (SAV LUQ) 
ONLINE    5 8 

STM (IB') (RESP LUQ) (WRONG ') (3 K ») (2 E ') 
(STIM BEK) 

• diaplay 5-6 

5 (USED XI) (WRONG X2)  .>   (REP USED COND) 

5 5 (IP')  .>   (USED) (DEP (REPLY CON)) (SAV CON) 
5 8 (IB')  .>   (USED) (Di-P (REPLY LUO)) (SAV LUQ) 

6 - (RESP)  ->   (DEP (REPLY ')) (SAV ') 
(ATTEND RESP) 

• initialize fira 
INITIALIZED 

2 TRUE IN PS 

OUTPUT FOR (ATTEND STIM) . (dap (alim e.O) 
STM  (STIMCIT) (READY) 

1 TRUE IN PS 
STM  (1 C ')(3T ')(2 I ') (STIMCIT) 

6 TRUE IN PS 

OUTPUT FOR (ATTEND RESP) . (dap (rasp dar)) 
STM (RESP DER) (REPLY ') (| C ') (3 T ») (2 I ') 

(STIMCIT) 

4 TRUE IN PS 

STM (WRONG ') (RESP DER) (1 C ») (3 T ') (2 1») 
(STIM CIT) 

7 TRUE IN PS 
NOW INSERTING 

(1 C ')  •>   (USED) (DEP (REPLY DER)) (SAY DER) 
ONLINE    5 9 

STM (1 C ') (RESP DER) (WRONG ') (3 T ') (2 | ») 
(STIMCIT) 

^diaplay 5-6 

5 (USED XI) (WRONG X2)  ->   (REP USED COND) 
5 5 (1 P ') .> (USED) (DEP (REPLY CON)) (SAV CON) 
5 8 (IB ') .> (USED) (DEP (CEPLY LUQ)) (SAV LUQ) 
5 9 (I C ')  •>   (USED) (DEP (REPLY DER)) (SAY DER) 

6 - (RESP)  ->   (DEP (REPLY ')) (SAV 7) 
(ATTEND RESP) 

• imiializa (ira 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (dap (.«.m buk)) 

STM (STIM BUK) (READY) 

1 TRUE IN PS 
STM (IB ') (3 K ') (2 U ') (STIM BUK) 
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III-2, 

5 8 TRUE fMPS 

LUO 

STM  (REPLY LUO) (USED (I B ')) (3 K ») (2 U ') 
<STIM BUK) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) . (d«p (r..p m.b)) 

STM (RESP MAB) (REPLY LUO) (USED (1 B ')) (3 K ') 
(2 U ■>) (STIM BUK) 

4 TRUE IN PS 
STM (WRONG LUO) (RESP MAB) (USED (I B '» (3 K ') 

(2 U fi (STIM BUK) 

5 TRUE IN PS 
STM (CONO (IB')) (WRONG LUO) (RESP MAB) (3 K ») 

(2 U ') (STIM BUK) 

7 TRUE IN PS 
NOW INSERTING 
(3 K ») (I B ») .>  (USED) (DEP (REPLY MAB)) (SAY MAB) 
ONLINE    5 7 

STM (3 K ') (RESP MAB) (WRONG LUO) (2 U ') 
(STIM BUK) 

•duplay 5-6 

5 (USED Xi) (WRONG X2) •>  (REP USED CONO) 
5 5 (IP?)   .>   (USED) (DEP (REPLY CON)) (SAY CON) 
5 7 (3 K ') (1 B ')  •>   (USED) (DEP (REPLY MAB)) 

(SAY MAB) 

5 8 (1 B»)  •>   (USED) (DEP (REPLY LUO)) (SAY LUO) 
5 9 (1 C ')  •>   (USED) (DEP (REPLY DER)) (SAY DER) 

6 - (RE^P)  .>   (DEP (REPLY ')) (SAY ») 
(ATTEND RESP) 

• mitialit« fir« 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (ftp (,,,„ „i» 

STM (STIM NAD (READY) 

1 TRUE IN PS 
STM (1 N?)(3L')(2A?)(STIMNAL) 

6 TRUE IN PS 

OUTPUT FOR (ATTEND RESP) . («top (,„p .*,)) 
STM (RESP LEO) (REPLY ») (| N ») (3 L ') (2 A ') 

(STIM NAD 

4 TRUE IN PS 
STM (WRONG ?) (RESP LEO) (1 N ') (3 L »> (2 A ») 

(STIM NAD 

7 TRUE IN PS 
NOW INSERTING 
(IN»)  .>  (USED) (DEP (REPLY LEO» (SAY LEO) 
ONLINE   5 95 

STM: (IN') (RESP LEO) (WRONG ») (3 L ') (2 A ») 
(STIM NAD 

• display 5-6 

5 (USED XI) (WRONG X2)  •>   (REP USED COND) 
55 (1 P ')   ->   (USED) (DEP (REPLY CON)) (SAY CON) 
5 7 (3 K ') (1 B ')  .>   (USED) (DEP (REPLY MAB)) 

(SAY MAB) 

5 8 (1 B')   •>   (USED) (DEP (REPLY LUO» (SAY LUO) 
59 (IC)   ->   (USED) (DEP (REPLY DER» (SAY DER) 

5 95 UN1)   .>   (USED) (DEP (REPLY LEO» (SAY LEO) 
6 - (RESP)  .>   (DEP (REPLY ')) (SAY ') 

(ATTEND RESP) 

• initialize fire 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (dap (ttim rab» 

STM  (STIM REB)(READY) 

1 TRUE IN PS 
STM (1 R') (3 B') (2 E ?) (STIM REB) 

6 TRUE IN PS 

OUTPUT FOR (ATTEND RESP) . (dap (reap mol)) 
STM  (RESP MOD (REPLY ') (1 R ') (3 B ') (2 E ') 

(STIM REB) 

4 TRUE IN PS 
STM  (WRONG ') fRESP MOD (1 R ') (3 B ') (2 E ») 

(STIM REB) 

7 TRUE IN PS 
NOW INSERTING 
(1 R »)   •>   (USED) (DEP (REPLY MOD) (SAV MOD 
ON LINE   5 98 

STM (1 R ') (RESP MOD (WRONG ') (3 B ') (2 E ') 
(STIM REB) 

• diaplay 5-6 

5 (USED XI) (WRONG X2)  ->  (REP USED COND) 
(IP')  •>   (USED) (DEP (REPLY CON)) (SAY CON) 
(3 K ') (1 B ')  •>   (USED) (DEP (REPLY MAB)) 
(SAY MAB) 

> (USED) (DEP (REPLY LUQ)) (SAY LUO) 
> (USED) (DEP (REPLY DER)) (SAY DER) 
•> (USED) (DEP (REPLY LEQ» (SAY LEO) 
•>   (USED) (DEP (REPLY MOD) (SAY MOL) 
•>  (DEP (REPLY ?» (SAV ?) 

55 
57 

58 (IB')   . 
59 (1 C ')   . 

5 95 (1 N ?) 
5 98 (1 R ') 

6 - (RESP) 
(ATTEND RESP) 

• initialize firt 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (dep (itim no,)) 

STM (STIM NOJ) (READY) 

1 TRUE IN PS 
STM (1 N') (3 J ?) (2 0 ?) (STIM NOJ) 

5 95 TRUE IN PS 

LEO 
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STM (REPLY LEO) (USED (I N ')) (3 J ») (2 0 ') 
(STIM MOJ) 

3 TRUE IN PS 

OUTPUT FOR (ATTEND RESP) . (d.p (r..p p,d)) 
STM (RESP PED) (REPLY LEQ) (USED (1 N ')) (3 J ') 

(2 0 ') (STIM NOJ) 

4 TRUE IN PS 

STM (WRONG LtO) (RESP PED) (USED (I N ')) (3 J ») 
(? 0 ') (STIM NOJ) 

5 TRUE IN PS 

STM (CONO (IN')) (WRONG LEQ) (RESP PED) (3 J ') 
<2 0 ') (STIM NOJ) 

7 TRUE IN PS 
NOW INSERTING 
<3 J ') (1 N ')  -> 
ONLINE   5 93 

STM  (3 J ») (RESP PED) (WRONG LEQ) (2 0 ') 
(STIM NOJ) 

(USED) (DEP (REPLY PED)) (SAY PED) 

•duplay 5-6 

5  (USED XI) (WRONG X2)  .>  (REP USED COND) 
5 5 (IP')  .>   (USED) (DEP (REPLY CON)) (SAY CON) 
57 (3 K ') (l B ') .»  (USED) (DEP (REPLY MAB» 

(SAY MAB) 

5 8 (1 B')  .>   (USED) (DEP (REPLY LUQ)) (SAY LUO) 
5 9 (1 C ')  ->   (USED) (DEP (REPLY DER» (SAY DER) 

5 93 (3 J ') (1 N »)  .>  (USED) (DEP (REPLY PED» 
(SAY PED) 

5 95 (1 N ')  .>   (USED) (DEP (REPLY LEQ)) (SAY LEO) 
5 98 (J R ')  .>   (USED) (DEP (REPLY MOD) (SAY MOD 

6 - (RESP)   .>   (DEP (REPLY ')) (SAY ') 
(ATTEND RESP) 

• milwliza fir« 
INITIALIZED 

2 TRUE IN PS 

OUTPUT FOR (ATTEND STIM) . (d.p (.»,m p.,)) 
STM  (STIM PAX) (READY) 

1 TRUE IN PS 

STM (1 P') (3 X ») (2 A ») (STIM PAX) 

5 5 TRUE IN PS 

CON 

STM (REPLY CON) (USED (I P »)) (3 X ') (2 A ») 
(STIM PAX) 

3 THU»; IN PS 

OUTPUT FOR (ATTEND RESP) . (d.p (r„p „„)> 

STM (RESO CON) (REPLY CON) (USED (1 P ')) (3 X ') 
(2 A') (STIM PAX) 

• inilializ« :,re 

INITIALIZED 
2 TRUE IN PS 

OUTPUT FOR (ATTEND STIM) . <d.p (.|M brt» 
STM (STIM BEK) (READY) 

i TRUE IN PS 

III-3. 

STM (1 B') (3 K ») (2 E ») (STIM BEK) 

5 7 TRUE IN PS 

MAB 

STM (REPLY MAD) (USED (3 K '» (USED (J 6 ')) 
(2 E ') (STIM BEK) 

3 TRUE IN PS 

OUTPUT FOR (ATTEND RESP) . (dtp (r..p luq» 
STM  (RESP LUO) (REPLY MAB) (USED (3 K ')) 

(USEDO B'»(2E ') (STIM BEK) 

4 TRUE IN PS 

STM (WRONG MAB) (RESP LUO) (USED (3 K ')) 
(USEOU B'))(2E ') (STIM BEK) 

5 TRUE IN PS 

STM (COND (3 K ')) (WRONG MAB) (RESP LUQ) 
(USEDd B')) (2 E') (STIM BEK) 

5 TRUE IN PS 

STM (COND (IB')) (WRONG MAB) (COND (3 K »)) 
(RESP LUO) (2 E ') (STIM BEK) 

7 TRUE IN PS 
NOW INSERTING 

(2 E ') (1 B ') (3 K ')   .>   (USED) (DEP (REPLY LUQ» (SAY LUO) 

STM (2 E ') (RESP LUO) (WRONG MAB) (STIM BEK) 

•display 5-6 

5 (USED XI) (WRONG X2)  .>   (REP USED COND) 
5 5 (1 P ')  .>   (USED) (DEP (REPLY CON)) (SAY CON) 
5 6 (2E ') (1 B ')(3K ')   .>   (USED) 

(DEP (REPLY LUO)) (SAY LUO) 
5 7 (3 K ') (l B ')   .>   (USED) (DEP (REPLY MAS)) 

(SAY MAB) 

5 8 (1 B ')  .>   (USED) (DEP (REPLY LUO)) (SAY LUO) 

6 9 (IC)   .>   (USED) (DEP (REPLY DErf)) (SAY DER) 
5 93 (3J') (| N')   •>   (USED) (DEP (REPLY PED)) 

(SAY PED) 

5 95 (1 N ')   .>   (USED) (DEP (REPLY LEQ)) (SAV LEQ) 
5 98 (I R ')   .>   (USED) (DEP (REPLY MOD) (SAY MOL) 

6 - (RtSP)   ..   (DEP (REPLY '» (SAY ») 
(ATTEND R^SP) 

• initiahic fir« 
INITIALIZED 

2 TRUE IN PS 

OUTPUT FOR (ATTEND STIM) . (d.p (.(im c.S» 
STM (STIM CIT) (READY) 

1 TRUE IN PS 

STM (1 C')(3T ») (2 I ») (STIM CIT) 

5 9 TRUE IN PS 

DER 

STM (REPLY DER) (USED (I C »)) (3 T ») (2 I ») 
(STIM CIT) 

3 TRUE IN PS 
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III-4. 

OUTPUT FOR (ATTEND RESP) . (dtp (rt(p d«r)) 
STM (BESP DEB) (REPLY DER) (USED (I C »» (3 T ') 

(2 I ») (STIM CIT) 

• imtialii« fir« 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (d.p (•t.m buk)) 

STM (STIM BUK) (READY) 

» TRUE IN PS 
STM (1 B ») (3 K ») (2 U ') (STIM BUK) 

5 7 TRUE IN PS 

MAB 

STM (REPLY MAB) (USED (3 K ')) (USED (IB')) 
(2 U ') (STIM BUK) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) • (d.p (r.ip m.b)) 

STM (RESP MAB) (REPLY MAB) (USED (3 K »)) 
(USED (1 B ')) (2 U ') (STIM BUK) 

• imtialii« fir» 
INITIALIZED 

2 TRUE IN PS 

OUTPUT FOR (ATTEND STIM) . (d.p (.(,m n.1)) 
STM (STIM NAL) (READY) 

1 TRUE IN PS 

STM  (1 N ?) (3 L ?) (2 A') (STIM NAL) 

5 95 TRUE IN PS 

LEO 

STM (REPLY LEO) (USED (1 N ')) (3 L ') (2 A ') 
(STIM NAL) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) . (d.p (r«.p i#q)) 

STM (RESP LEO) (REPLY LEO) (USED (1 N ')) (3 L ») 
(2 A ') (STIM NAL) 

• initialise fir» 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (d.p (.«im .*)) 

STM (STIM BEB) (READY) 

I TRUE IN PS 

STM (1 R ?) (3 B ») (2 E') (STIM BEB) 

5 98 TRUE IN PS 

MOL 

STM (REPLY MOD (USED (I R ')) (3 B ') (2 E ») 
(STIM REB) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) - («top (r«p mol» 

STM (RESP MOD (REPLY MOD (USED (I R ')) (3 B ') 

(2 E ') (STIM REB) 

• initialize fir* 
INITIALIZED 

2 TRUE IN PS 
OUTPUT POP (ATTEND STIM) . (d.p (•dm no»)) 

STM (STIM NOJ) (READY) 

1 TRUE IN PS 
STM (IN ') (3 J ») (2 0 ?) (STIM NOJ) 

5 93 TRUE IN PS 

PEO 

STM (REPLY PED) (USED (3 J ')) (USED (I N »)) 
(2 0 ') (STIM NOJ) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) ■ (dtp (r..p p.d)) 

STM (RESP PED) (REPLY PED) (USED (3 J ?)) 
(USEDd N')) (2 0') (STIM NOJ) 

•display 5-6 

5 (USED XI) (WRONG X2) »>  (REP USED COND) 
5 5 (1 P ')  •>   (USED) (OEP (REPLY CON)) (SAY CON) 
5 6 (2 E ') (1 B ') (3K') .>  (USED) 

(OEP (REPLY LUO)) (SAY LUO) 
5 7 (3 K ') (1 B »)  .>   (USED) (DEP (REPLY MAB)) 

(SAY MAB) 

5 8 (1 B ')  •>   (USED) (DEP (REPLY LUO)) (SAY LUO) 
5 9 (1 C ')  ->   (USED) (DEP (REPLY DER)) (SAY DER) 

5 93 (3 J ') (1 N »)   ->   (USED) (DEP (REPLY PEO» 
(SAY PED) 

5 95 (1 N ')  •>   (USED) (DEP (REPLY LEO» (SAY LEO) 
5 98 (1 R ')  .>   (USED) (DEP (REPLY MOD) (SAY MOD 

6 - (RESP)   •>   (DEP (REPLY '» (SAY ») 
(ATTEND RESP) 

• initialize fir« 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (d.p dtim pa.» 

STM (STIM PAX) (READY) 

1 TRUE IN PS 
STM (IP ») (3 X »)(2 A ?) (STIM PAX) 

5 5 TRUE IN PS 

CON 

STM (REPLY CON) (USED (1 P ?)) (3 X ») (2 A ») 
(STIM PAX) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) - (d.p (rup con» 

STM (RESP CON) (REPLY CON) (USED (I P »» (3 X ') 
(2 A ») (STIM PAX) 

•initiahz* fir» 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (d.p Mi bth» 

STM (STIM BEK) (READY) 
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1 TRUE IN PS 
STM (I B ') (3 K ?) (2 E ') (STIM BEK) 

56 TRUE IN PS 

LUQ 

STM (REPLY LUO) (USED (2 E ')) (USED (1 B ')) 
(USED (3 K »)) (STIM BEK) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) . (d«p (rttp luq» 

STM  (RESP LUO) (REPLY LW)) (USED (2 E ')) 
(USED (IB')) (USED (3 K ')) (STIM BEK) 

• mitialix« fir« 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (dtp Ul.m ci»)) 

STM (STIM CIT) (READY) 

1 TRUE IN PS 
STM (1 C ') (3 1») (2 I ') (STIM CIT) 

6 9 TRUE IN PS 

DER 

STM (REPLY DER) (USED (I C »)) (3 T ') (2 I') 
(STIM CIT) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) . (d.p (r«ip dar)) 

STM (RESP DER) (REPLY DER) (USED (1 C »)) (3 T ») 
(2 I ») (STIM CIT) 

•initialize *ire 
INITIALIZED 

? TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (d«p (ttim buk)) 

STM (STIM PUK) (READY) 

1 TRUE IN PS 
STM (I B ') (3 K ?) (2 U ») (STIM BUK) 

5 7 TRUE IN PS 

MAB 

STM  (REPLY MAB) (USED (3 K ')) (USED (IB')) 
(2 U ') (STIM BUK) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) . (d.p (ratp mtb)) 

STM (RESP MAB) (REPLY MAB) (USED (3 K ?)) 
(USED (I P ?)) (2 U') (STIM BUK) 

• inilializ« fira 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOB (ATTEND STIM) - (dap (at.m nal» 

STM (STIM NAL) (READY) 

1 TRUE IN PS 

1II-5. 

STM (IN ?) (3 L ') (2 A ') (STIM NAL) 

5 95 TRUE IN PS 

LEO 

STM (REPLY LEO) (USED (I N ')) (3 L ») (2 A ») 
(STIM NAL) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) - (dap (rasp laq» 

STM (RESP LEO) (REPLY LEO) (USED (I N ')) (3 L ') 
(2 A ') (STIM NAL) 

• im'ializa fira 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) ■ (dap (atim rab)) 

STM  (STIM REB) (READY) 

1 TRUE IN PS 
STM (1 R ») (3 B ') (2 E ') (STIM REB) 

5 98 TKUE IN PS 

MOL 

STM (REPLY MOD (USED (1 R ?)) (3 B ') (2 E ?) 
(STIM REB) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) ■ (dap (raap mol» 

STM  (RESP MOL) (REPLY MOL) (USED (I R ')) (3 B ') 
(2 E ') (STIM REB) 

• mitializa fira 
INITIALIZED 

2 TRUE IN PS 
OUTPUT FOR (ATTEND STIM) . (dap (slim not)) 

STM  (STIM NOJ) (READY) 

1 TRUE IN PS 
STM  (1 N ') (3 J ') (2 0 ') (STIM NOJ) 

5 93 TRUE IN PS 

PEO 

STM (REPLY PED) (USED (3 J ')) (USED (I N »)) 
(2 0 ') (STIM NOJ) 

3 TRUE IN PS 
OUTPUT FOR (ATTEND RESP) ■ (dap (ratp pad)) 

STM (RESP PED) (REPLY PED) (USED '3 J ')) 
(USED U N ')) (2 0 ') (STIM NOJ) 

•display 

1 (READY) (STIM XI)  •>   (REM (READY)) 
(PERCEIVE XI ') 

2 (READY)  ->   (ATTEND STIM) 
3 (REPLY) - (RESP)  •>   (ATTEND RESP) 
fl (REPLY XI) - (RESP XI)  ->  (REP REPLY WRONG) 
5 (USED XI) (WRONG X2)  •>   (REP USED COND) 

5 5 (I P')  ->   (USED) (OEP (REPLY CON)) (SAY CON) 
5 6 (2 E ') (1 B ') (3K')  •>   (USED) 

MMMMB^MMMa 
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(DEP (REPLY LUO)) (SAY LUQ) 
5 7 (3 K ') (1 B ?)  •>   (USED) (DEP (BEPLY MAB» 

(SAY MAB) 

5 8 (IB»)  .>   (USED) (DEP (REPLY LUQ)) (SAY LUO) 
5 9 (1 C ')  ->   (USED) (DEP (REPLY DER)) (SAY DER) 

5 93 (3 J ») (1 N ')  •>   (USED) (DEP (REPLY PED)) 
(SAY PED) 

5 95 (IN')  .>   (USED) (DEP (REPLY LEO)) (SAY LEO) 
5 98 (1 B?)  .>   (USED) (DEP (REPLY MOD) (SAY MOD 

8 - (BESP)  .>  (DEP (BEPLY ')) (SAY ') 
(ATTEND BESP) 

7 (XI X2 ') (BESP X3) (WBONG X4) •> 
(COND (XI X2 »)) 
(ACTION (USED) (DEP (BEPLY X3)) (SAY X3)) 
(PROD (SAY X4)) (STOP) 

-___^^__,—, 
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APPENDIX IV.  Trace of EPAM2 Production System. 

• memory display pi display 
MEMORY MODE 

I  STM-(READV) 

PS MODE 

1 (READY) (STIM XI)  •>   (REM (READY)) 
(PERCEIVE XI ») 

2 (READY)   ->   (ATTEND STIM) 
3 (REPLY) - (RESP)  ->   (ATTEKC RESP) 

4 (REPLY XI)-(RESP XI)  •>   («EP REPLY WRONG) 
5 (REPLY XI) (RESP XI)  •>   (SIOP) 

6 (USED) (TEST XI)-(TEST X2) .> 
(REP USED USED.) 

7 (TEST XI)(T£STX2)(X3X4»)  .> 
(REM (X3 X4 »)) 

8 (TEST XI) (TEST X2)-(R-GEN) •> 
(OEP(REPLYXl)(R-GEN))(SAYXI) 

8 - (RESP)  .>   (DEP (REPLY ?)) (SAY ') 
(ATTEND RESP) 

10 (RESP XI) - (X2 X3 RESP)  .>  vPERCEIVE XI RESP) 
11 (WRONG) (TEST XI) (STIM XI)-(R-GEN) .> 

(DEP (R-GEN)) 

12 (OLD XI) (R-GEN)  •>  (REP OLD CONO) 
(DEP (HOLD XI)) 

13 (USED XI) (USED.) (R-GEN)  .>  (HEP USED CONO) 
(DEP (HOLD XI)) 

14 (R-GEN) (COND (XI X2 »)) (XI X2 RESP) .> 
(REM (XI X2 RESP)) 

15 (XI X2 RESP) (RESP X3) (WRONG X4) - (DONE) 
•>   (COND (XI X2 »)) 

(ACTION (OLD) (DEP (REPLY X3)) (SAY X3)) 
(PROD (SAY X4) (TEST X4)) (DEP (DONE)) 

16 (USED. XI)   .>   (REP USED. CONO) 
17 (OLD) (DONE) - (TEST) •>  (REP OLD COND) 
18 (R-GEN) (HOLD (XI X2'))  .> 

(REM (HOLD (XI X2 '))) (ACTION (DEP (XI X2 '))) 
19 (R-GEN) (XI X2 RESP) (STIM X3) (WRONG X4) .> 

(ACTION (DEP (TEST X3))) 
(ACTION (USED) (DEP (XI X2'))) 
(PROD (DEP (TEST X3))) (STOP) 

20 (XI X2 n (X3 X4 RESP) (STIM X5) (WRONG X6) 
•>   (CONO (XI X2 ■>)) 

(ACTION (USED) (DEP (X3 Xi» »)) (DEP (TEST X5))) 
(PROD (SAY X6)) (STOP) 

IV-1. 

85 (I C ') •> fOLD) (DEP (REPLY CON)) (SAY CON) 
8 8 (IP') .> (USED) (DEP (I C ?)) 

(DEP (TEST PAX)) 
9 - (RESP) •> (DEP (REPLY ')) (SAY ') 
(ATTEND RESP) 

•iniliili/e «ire 

INITIALIZED 
2 

OUTPUT FOR (ATTEND SUM) 
1 9 

(dtp (ttim b.k)) 

OUTPUT FOR (ATTEND RESP) . (dep (rttp luq)) 
4 10 15 

NOW INSERTING 

(1 L')   •>   (OLD) (DEP (REi'LY LUQ)) (SAY LUQ) 
ONLINE     8 9 
20 

NOW INSERTING 

(1 B ?)   •>   »USED) (DEP (I L ')) (DEP (TEST BEK)) 
ON LINE   8 95 

•duplay 8-9 

8 (TEST XI) (TEST X2)- (R-GEN)   •> 
(DEP (REPLY XI) (R-GEN)) (SAY XI) 

8 5 (IC)   ->   (OLD) (DEP (REPLY CON)) (SAY CON) 
8 8 (I P ')   ->   (UCED) (DEP (1 C »)) 

(DEP (TEST PAX)) 
8 9 (1 L ') •> (OLD) (DEP (REPLY LUQ» (SAY LUQ) 
8 95 (I B ') -> (USED) (DEP (I L »)) 

(DEP (TEST BEK» 
9 - (RESP)  •>   (DEP (REPLY ')) (SAY ») 

(ATTEND RESP) 

•midaliz« fire 

INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) . (dep (.dm c.O) 
1 85 

CON 

• fire 
2 

OUTPUT FOR (ATTEND STIM) 
I 9 

(dep (tlim pa«)) 

OUTPUT FOR (ATTEND RESP) . (dep (reap con» 
4 10 15 

NOW INSERTIN3 

(1 C ') .>  (OLD) (DEP (REPLY CON)) (SAY CON) 
ONLINE    8 5 
20 

NOW INSERTING 

(IP') •>  (USED) (DEP (1 C ')) (DEP (TEST PAX)) 
ONLINE    8 8 

•display 8-9 

8 (TEST XI) (TEST X2)-(R-GEN) .» 
(DEP (REPLY XI) (R-GEN)) (SAY XI) 

OUTPUT FOR (ATTEND RESP) . (dep (reep der» 
4 10 15 

NOW INSERTING 
(ID')  .>   (OLD) (DEP (REPLY DER)) (SAY DER) 
ONLINE    8 3 

17 20 
NOW INSERTING 

(3 T ') (I C ')  .>   (USED) (DEP (1 D ')) (DEP (TEST CIT» 
ONLINE    84 

•duplay 8-9 

8 (TEST XI) (TEST X2) - (P-GEN)  •> 

(DEP (REPLY XI) (R-GEN)) ,3AV XI) 
8 3 (1 D')  .>   (OLD) (DEP (REPLY DER)) (SAY DER) 
84 (3 T ') (l C ')  •>  (USED) (DEP (I D ')) 

(DEP (TEST CIT)) 

8 5 (1 C ')   •>   (OLD) (DEP (REPLY CON)) (SAY CON) 
BP (I P ')   .>   (USED) (DEP (1 C »)) 

(DEP (TEST PAX)) 

8 9 (I L ')  .>   (OLD) (DEP (REPLY LUQ)) (SAY LUQ) 
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IV-2. 

8 95 (1 B ')   .>   (USED) (DEP (1 L »)) 
(DEP (TEST BEK)) 

9 - (HESP)  •>   (DEP (REPLY ?)) (SAY ') 
(ATTEND RESP) 

■iniluliz«  fir« 

INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) 
1 8 95 6 8 9 

(d.p (itim buk» 

LUO 

OUTPUT FOR (ATTEND RESP) • (d.p (r(.p m«b)) 
4 10 15 

NOW INSERTING 
(1 M ')   .>   (OLD) (DEP (REPLY MAS)) (SAY MAS) 
ONLINE   8 85 

16 20 
NOW INSERTING 
(3 K ') (1 B »)  .>  (USED) (DEP (1 M ')) (DEP (TEST BUK)) 
ON LINE   8 88 

(DEP (TEST CIT)) 
8 5 (1 C ?)  ->  (OLD) (DEP (REPLY CON)) (SAY CON) 
8 8 (1 P»)  •>   (USED) (DEP (1 C ')) 

(DEP (TEST PAX)) 
8 85 (1 M ')  .>   (OLD) (DEP (REPLY MAB» (SAY MAB) 
8 88 (3 K ') (1 B ')  •>   (USED) (DEP (1 M ?)) 

(DEP (TEST BUK)) 
8 9 (1 L ')  •>  (OLD) (DEP (REPLY LUQ)) (SAY LUO) 

8 95 (IB')  •>  (USED) (DEP (I L ?» 
(DEP (TEST BEK)) 

8 98 (1 L ')  •>  (OLD) (DEP (REPLY LEO)) (SAY LEO) 
8 99 (1 N') •>  (USED) (DEP (1 L ?» 

(DEP (TEST NAD) 
9. - (RESP)  •>   (DEP (REPLY ?)) (SAY ») 

(ATTEND RESP) 

• Initialize fir« 
INITIALIZED 
2 

OUTPUT FOR (ATTtNDSflM) 
1 9 

(d«p («(im rtb)) 

•dupUy 8-9 
8 (TEST XI) (TEST X2) - (R-GEN)  •> 

(DEP (REPLY XI) (R-GEN)) (SAY XI) 
8 3 (1 D ?)  •>  (OLD) (DEP (REPLY DER» (SAY DER) 
8 4 (3 T ») (l C)  •>  (USED) (DEP (I 0 ')) 

(DEP (TEST CIT)) 
8 5 (1 C ?) •> (OLD) (DEP (REPLY CON» (SAY CON) 
88 (1 P ») •> (USED) (0EP(1 C ')) 

(DEP (TEST PAX)) 
8 85 (1 M ') •> (OLD) (DEP (REPLY MAB)) (SAY MAB) 
8 88 (3K') (1 B') •> (USED) (DEP (1 M»)) 

(DEP (TEST BUK)) 
8 9 (1 L ») •> (OLD) (DEP (REPLY LUO» (SAY LUO) 
8 95 (1 B') •> (USED) (DEP (1 L ?)) 

(DEP (TEST BEK» 
9 - (RESP) -> (DEP (REPLY ')) (SAY ') 
(ATTEND RESP> 

• initialize fir« 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) . (dep (.tim nel)) 
1 9 

OUTPUT FOR (ATVEND RESP) - (dep (reep leg)) 
4 10 15 

NOW INSERTINfJ 
(1 L »)  •>   (OLD) (DEP (REPLY LEO)) (SAY LEO) 
ONLINE   8 9? 
20 

NOW INSERTING 
(IN») ->   (USED) (DEP (I L ')) (DEP (TEST NAD) 
ONLINE   8 99 

•diipley 8-9 

8 (TEST XI) (TEST X2) - (R-GEN) •> 
(DEP (REPLY XI) (R-GEN» (SAY XI) 

8 3 (I D ')  •>   (OLD) (DEP (REPLY DER» (SAY DER) 
84 etTno en •> OJSEO) (DEPu o'» 

OUTPUT FOR (ATTEND RESP) - (dep (retp mol)) 
4 10 15 

NOW INSERTING 
(1 M i»)  •>   (OLD) (DEP (REPLY MOD) (SAY MOL) 
ON LINE 8 995 
20 

NOW INSERTING 
OR')  ->   (USED) (DEP (1 M »)) (DEP (TEST REB» 
ON LINE 8 998 

•diaplay 8-9 

8 (TEST XI) (TEST X2) - (R-GEN) •> 
(DEP (REPLY XI) (R-GEN» (SAY XI) 

8 3(10') •> (OLD) (DEP (REPLY DER)) (SAY DER) 
8 4 (3 T ') (I C ') •> (USED) (DEP (I D ?)) 

(DEP (TEST CIT» 
8 5 (1 C ') •> (OLD) (DEP (REPLY CON)) (SAY CON) 
8 8 (1 P ») .> (USED) (DEP (1 C ?)) 

(DEP (TEST PAX)) 
8 85 (1 M ') •> (OLD) (DEP (REPLY MAB)) (SAY MA3) 
8 88 (3 K ') (1 B ') -> (USED) (DEP (I M »)) 

(DEP (TEST BUK» 
89 (1 L ') •> (OLD) (DEP (R^PLY LUQ» (SAY LUO) 
8 95 (1 B ') •> (USED) (DEP (i L ?)) 

(DFP (TEST BEK» 
8 98 (1 L ') •> (OLD) (DEP (REPLY LEO)) (SAY LEQ) 
8 99 (IN') •> (USED) (DEP (1 L ?» 

(DEP (TEST NAD) 
8 995 (1 M ») •> (OLD) (DEP (REPLY MOD) (SAY MOL) 
8 998 (1 R ') •> (USED) (DEP (1 M »)) 

(DEP (TEST REB» 
9 - (RESP) •> (DEP (REPLY »)) (SAY ?) 

(ATTEND RESP) 

• initialize fire 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) 
1 8 99 6 89 

LUO 

(dep (ilim not)) 
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I 
(d«p (r«ip ptd» OUTPUT FOR (ATTEND RESP) 

4 10 15 
NOW INSERTING 
(IP')  •>   (OLD) (DEP (REPLV PEO)) (SAV PED) 
ON LINE   8 89 

16 20 
NOW INSERTING 
<3 J ') (1 N ?)  •>   (USED) (DEP (IP')) (DEP (TEST NOJ» 
ON LINE 8 895 

•display 8-9 
8 (TEST XI) (TEST X2) - (R-GEN)  •> 

(DEP (REPLY XI) (R-CEN)) (SAV XI) 
8 3 (1 D ')  •>   (OLD) (DEP (REPLY DER)) (SAY DER) 
8 4 (3 T ') (I C ')  •>  (USED) (DEP   10')) 

(DEP (TEST CIT)) 
8 5 (1 C ')  •>   (OLD) (DEP (REPLY CON)) (SAY CON) 
8 8 (1 P')  .>   (USED) (DEP(J C »» 

(DEP (TEST PAX)) 
8 85 (1 M ')  •>   (OLD) (DEP (REPLY MAB)) (SAY MAB) 
8 88 (3 K ') (1 B ')  •>   (USED) (DEP (1 M ')) 

(DEP (TEST BUK)) 
8 89 (I P ') .>  (OLD) (DEP (REPLY PEO» (SAY PEO) 

8 895 (3 J ') (1 N ») •>  (USED) (DEP (1 P ')) 
(DEP (TEST NOJ)) 

8 9 (1 L ')  •>   (OLD) (DEP (REPLV LUQ» (SAY LUO) 
895 (1 B ')  ■>   (USED) (DEP (I L »)) 

(DEP (TEST BEK» 
8 98 (1 L ')  •>   (OLD) (DEP (REPLY LEO)) (SAY LEO) 
8 99 (1 N')  •>   (USED) (DEP (1 L ?» 

(DEP (TEST NAD) 
8 995 (1 M »)  ->   (OLD) (DEP (REPLY MOD) (SAY MOD 
8 998 (1 R ')  •>   (USED) (DEP (IM?» 

(DEP (TEST RES)) 
9 - (RESP)  .>   (DEP (REPLV ')) (SAY ') 

(ATTEND RESP) 

• iniliahzt fir« 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) 
188 6 85 

CON 

(d«p (ilim pax)) 

OUTPUT FOR (ATTEND RESP) . (d.p (nip con» 

•initially» fir« 

INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) 
1 8 88 6 6 885 

MAB 

(dap (atim bak» 

16 16 20 
NOW INSERTING 
(2 E ') (3 K ') (1 B ') 
ON LINE   8 84 

IV-3. 

• >  (USED) (DEP (I L ')> (DEP (TCST BEK)) 

• diaplay 8-9 
8 (TEST XI) (TEST X2) - (R-GEN)  •> 

(DEP (REPLY XI) (R-GEN)) (SAY XI) 
8 3 (I D ')  •>   (OLD) (DEP (REPLY DER» (SAY DER) 
84 (3 T ') (1 C)  •>   (USED) (DEP (1 D ?)) 

(DEP (TEST CIT)) 
8 5 (I C ')  •>   (OLD) (DEP (REPLY CON» (SAY CON) 
8 8 (IP')  •>   (USED) (DEP (1 C ')) 

(DEP (TEST PAX» 
8 83 (1 L ')   •>   (OLD) (DEP (REPLY LUQ)) (SAY LUO) 
8 84 (2 E ') (3K ') (1 B')  o   (USED) 

(DEP (1 L ')) (DEP (TEST BEK» 
8 85 (1 M ')   •>   (OLD) (DEP (REPLY MAB)) (SAY MAB) 
8 88 (3 K ') (1 B ')  •>   (USED) (DEP (IM')) 

(DEP (TEST BUK» 
8 89 (1 P')   •>   (OLD) (OEP (REPLY PEO)) (SAY PED) 

8 895 (3 J ') (1 N ')   •>   (USED) (DEP (1 P »)) 
(DEP (TEST NOJ» 

8 9 (1 L 7)  •>   (OLD) (DEP (REPLY LUO» (SAY LUO) 
8 95 (1 B ')  .>   (USED) (DEP (1 L ')) 

(DEP (TEST BEK)) 
8 98 (1 L ')   ->   (OLD) (OEP (REPLY LEO)) (SAY LEO) 
8 99 (1 N ')   •>   (USED) (DEP (1 L »)) 

(DEP (TEST NAD) 
8995  (1 M')   ->   (OLD) (DEP (REPLY MOD) (S^Y MOD 
8 998 (1 R ')   •>   (ilSED) (DEP (1 M ')) 

(DEP (TEST PCS» 
9 - (RESP)   ->   (DEP (REPLY ')) (SAV ') 

(ATTEND RESP) 

• midjIizB  fire 

INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) . (dap (alrni c.O) 
1846683 

DER 

OUTPUT FOR (ATTEND RESP) a (dap (ratp dar)) 

• milializa fira 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) a (dap (atim buM) 
1 888 6 6 885 

MAB 

OUTPUT FOR (ATTEND RESP) • (dtp (ratp mab» 

OUTPUT FOR (ATTEND RESP) . (dtp (rtap luq» 
4 10 15 

NOW INSERTING 
(I L ')  •>   (OLD) (DEP (REPLV LUO» (SAY LUO) 
ON LINE   8 83 

• midaliza firt 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) . (dtp (alim nal» 
1 8 99 6 8 83 



mmmmm^t "■■ -■■"" 

IV-4. 

(dap (rtip Itq» 

(OLD) (DEP (REPLY LEO)) (SAY LEO) 

LUO 

OUTPUT FOR (ATTEND RESP) 
4 10 11  12 14 15 

NOW INSERTING 
(3 0') (1 L ') 
ON LINE   8 82 

16 18 19 
NOW INSERTING 

(I 'i ')  •>   (USED) (DEP (3 0 ')) (DEP (TEST NAL)) (OEP (1 
ONLINE 8 985 

•display 8-9 

8 (TEST XI) (TEST X2)- (R-GEN) •> 
(DEP (REPLY XI) (R-GEN)) (SAY XI) 

8 3 (1 D ') .> (OLD) (DEP (REPLY DER)) (SAY DER) 
8 4 (3 T ') (1 C ') .> (USED) (DEP (1 D ')) 

(OEP (TEST CIT)) 

8 5 (IC) •> (OLD) (DEP (REPLY CON)) (SAY CON) 
8 8 (IP') .> (USED) (DEP (1 C ?)) 

(DEP (TEST PAX)) 
8 82 (3 0 ») (l L ?) •> (OLD) (DEP (REPLY LEO)) 

(SAY LEO) 

8 83 UL') -> (01 D) (DEP (REPLY LUO)) (SAY LUO) 
8 84 (2E?)(3K') IB') .> (USED) 

(DEP (1 L ')) (Dio (TEST BEK)) 
8 85 (1 M ') .> (OLD) (DEP (REPLY MAB)) (SAY MAB) 
8 88 (3 K ') (1 B ') .> (USED) (DEP (1 M ')) 

(DEP (TES" BUK)) 
8 89 (1 P ') ., (OLD) (DEP (REPLY PED)) (SAY PED) 
8 895 (3 J ') (1 N ') .> (USED) (DEP (1 P ')) 

(DEP (TEST NOJ)) 
8 9 (1 L ') •> (OLD) (DEP (REPLY LUO» (SAY I UO) 
8 95 (1 B ') •> (USED) (DEP (1 L »» 

(DEP (TEST BEK» 
8 98 (1 L ') •> (OLD) (DEP (REPLY LEO» (SAY LEQ) 
8 985 (1 N ') .> (USED) (DEP (3 0 '» 

(OEP (TEST NAD) (DEP (1 L »)) 
8 99 (1 N') •> (USED) (DEP (1 L ')) 

(DEP (TEST NAD) 

8 995 (I M ')  .>   (OLD) (DEP (REPLY MOD) (SAY MOD 
8 998 (1 R')  .>   (USED) (OEP (1 M')) 

(DEP (TEST REB» 
9 - (RESP)  .>   (DEP (REPLY ')) (SAY ') 

(ATI UD RESP) 

• milializ« fir« 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) . (d.p Ma r.b» 
1 8 9G8 6 8 85 

i (dap (ratp mol» OUTPUT FOR (ATTEND RESP) 
4 10 11  12 14 IS 

NOW INSERTING 

(3 L ') (1 M ?)   .>   (OLD) (DEP (RIPLY MOL,) (SAY MOD 
ON LINE 8 845 

16 18 19 
NOW INSERTING 

(1 R ')  •>   (USED) (DEP (3 L ')) (DEP (TEST REB» (DEP (1 
ON LINE 8P97 

•display 8-9 

8 (TEST XI) (TEST X2) - (R-GEN)  •> 
(DEP (REPLY XI) (R-GEN» (SAY XI) 

8 3 (ID')  ■>   (OLD) (DEP (REPLY DER)) (SAY DER) 
8 4 (3 T ') (1 C »)  ->   (USED) (DEP (1 D ?)) 

(DEP (TEST CIT)) 

8 5 (1 C)  •>   (OLD) (DEP (REPLY CON)) (SAY CON) 
8 8 (1 P')  .>   (USED) (DEPd C ')) 

(DEP (TEST PAX)) 
L ?»     8 82 (3 0 ') (1 L ')  ■>   (OLD) (DEP (REPLY LEO)) 

(SAY LEO) 
8 83 (1 L ')   ->   (OLD) (DEP (REPLY LUO» (SAY LUO) 
8 84 (2 t ') (3K ') (l B')  •>  (USED) 

(DEP (1 L ')) (DEP (TEST BEK» 
8 845 (3 L ») (1 M ')  .>   (OLD) (DEP (REPLY MOL» 

(SAY MOL) 

8 85 DM')   •>   (OLD) (OEP (REPLY MAB» (SAY MAB) 
8 88 (3 K ') (1 B (USED) (DEP (1 M ')) 

(DEP (TEST BUK)) 
8 89 (1 P ?)  ->   (OLD) (DEP (REPLY PED» (SAY PED) 

8 895 (3 J') (1 N ')  ->   (USED) (DEPd P'„ 
(DEP (TEST NOJ)) 

8 9 (1 L ')   •>   (OLD) (DEP (REPLY LUQ» (SAY LUO) 
8 95 (IB')  •>   (USED) (DEP (1 L ')) 

(DEP (TEST BEK)) 
8 98 (1 L ')   ->   (OLD) (DEP (REPLY LEO)) (SAY LEQ» 

8 985 (1 N')  •>   (USED) (DEP (3 0')) 
(DEP (TEST NAD) (DEP (1 L ')) 

8 99 (1 N ')  ->   (USED) (DEP (1 L ')) 
(DEP (TEST NAD) 

8 995 (1 M ')  ->   (OLD) (DEP (RLPLY MOD) (SAY MOL) 
8 997 OR»)  .>• (USED) (DEP (3 L ')) 

(DEP (TEST REB» (DEPd M »)) 
8 998 (1 R ')   ->   (USED) (DEP (1 M ')) 

(DEP (TEST RiB» 
9 - (RESP)   ->   (DEP (REPLY ')) (SAY ') 

(ATTEND RESP) 

• inilializ« fire 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) 
1  8 895 6 6 88778 

(dtp (itim no») 

PAX 

OUTPUT FOR (ATTEND RESP) . (dap (raap pad)) 
4 10 13 14 15 

NOW INSERTING 
(3D ') (1 P ')  •> 
ONLINE    8 7 

16 16 18 19 
NOW INSERTING 
(3 J ») (1 N ')  •> 
ON LINE £893 

(OLD) (DEP (REPLY PED)) (SAY PED) 

(USED) (DEP (3 0 ')) (OEP (TEST NOJ» (OEP (1 P ?)) 

M»» 

• dieplay 8-9 
8  (TEST XI) (TEST X2) - (R-GEN)  a» 

(DEP (REPLY XI) (R-GEN)) (SAY XI) 
8 3(10')  •>   (OLD) (DEP (REPLY DER» (SAY DER) 
84 (3 T ') (1 C ')  •>  (USED) (DEP (I 0 »)) 

(DEP (TEST CIT)) 

8 5 (I C ')  •>  (OLD) (DEP (REPLY CON)) (SAY CON) 



mmm ■    ■' '" ■»  ■' ■ ■P"WIi" 

1 
f 

IV-5. 

8 7 (3 0 ') (1 P ')   •>   (OLD) (OEP (REPLY PED)) 
(SAY PEO) 

BE (I P ')  ->   (USED) (DEPO C ')) 
(DEP (TEST PAX» 

8 82 (3Q')UL')   ->   (OLD) (DEP (REPLY LEO» 
(SAY LtQ) 

8 83 (1 L ?)  •>   (OLD) (DEP (REPLY LUQ» (SAY LUQ) 
8 84 (2 E ') (3K ')(! B ')  •>   (USED) 

(DEP (1 L ')) (DEP (TEST BEK» 
8 845 (3 L ') (I M ')   •>   (OLD) (DEP (REPLY MOD) 

(SAY MOD 
8 85 (1 M')  •>   (OLD) (DEP (REPLY MAB» (SAY MAB) 
8 88 (3 K ') (1 B ')  ->   (USED) (DEP (1 M ')) 

(DEP (TEST BUK)) 
8 89 (IP ')  •>   (OLD) (DEP (REPLY PED)) (SAY PED) 

8 893 (3 J 7) (1 N ')   ->   (USED) (DEP (3 D ')) 
(DEP (TEST NOJ» (DEP (I P')) 

8 895 (3 J ») (1 N ')  ■>   (USED) (DEP (IP')) 
(DEP (TEST NOJ)) 

8 9 (1 L ')  ■>   (OLD) (DEP (REPLY LUQ)) (SAY LUQ) 
895 (1 B ')  •>   (USED) (DEP (I L ')) 

(DEP (TEST BEK» 
8 98 (1 L »)  •>   (OLD) (DEP (REPLY LEO)) (SAY LEO) 

8 985 (1 N ')  •>   (USED) (DEP (3 Q ')) 
(DEP (TEST NAD) (DEP (I L ')) 

8 99 (1 N ')  •>   (USED) (DEP (I L ')) 
(DEP (TEST NAD) 

8 995 (1 M ') .> (OLD) (DEP (REPLY MOD) (SAY MOD 
8 997 (1 R ') -> (USED) (DEP (3 L '» 

(DEP (TEST REB» (DEP (I M »» 
8 998 (1 B ') •> (USED) (DEP (1 M')) 

(DEP (TEST REB» 
9 - (RESP) •> (OEP (REPLY ')) (SAY ') 

(ATTEND RESP) 

• initialize fira 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) 
I 88 6 85 

DER 

OUTPUT FOR (ATTEND RESP) • (d«p (r*tp dtr» 
5 

«initialize fire 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) . (d.p (■«•m buh» 
1 888 6 6 885 

MAB 

OUTPUT FOR (ATTEND RESP) ■ (dep (reip mib» 
5 

• initialize fire 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) . (dep (ttim nal)) 
1 8 985 6 8 82 

OUTPUT FOR (/> .TEND RESP) . (dep (reap leq» 

•'initialize fire 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) - (dep (edm reb» 
1 8 997 6 8 845 

(dep (atim pan)) 
OUTPUT FOR (ATTEND RESP) • (dep (reap mol» 

CON 

OUTPUT FOR (ATTEND RESP) a (dep (reap con» 

• initialize fire 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) a (dep (ilim bek» 
1 884 6 6 6 883 

• initialize fire 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) • (dep (atim noi» 
1 8 893 6 6 8 7 

PEO 

OUTPUT FOR (ATTEND RESP) • (dep (reap pad)) 

LUQ 

OUTPUT FOR (ATTEND RESP) • 
5 

• initialize fire 
INITIALIZED 
2 

OUTPUT FOR (ATTEND STIM) 
1846683 

(dep (reap luq» 

(dep (atim cil» 

•diaplay 
1 (READY) (STIM XI) .>  (REM (READY)) 

(PERCEIVE XI ') 
2 (READY)  .>  (ATTEND STIM) 
3 (REPLY) - (RESP)  •>  (ATTEND RESP) 
4 (REPLY XI) - (RESP XI)  •>   (REP REPLY WRONG) 
5 (REPLY XI) (RESP XI)  ■>   (STOP) 
6 (USFD; (TEST XI) - (TEST X2) •> 

(REP USED USEDO 
7 (TEST XI) (TEST X2)(X3X4') -> 

(REM (X3 X4 »)) 



IV-6. 

8 (TEST XI) (TEST X2)- (R-GEN) •> 
(DEP (REPLV XI) (R-GEN)) (SAV XI) 

8 3 (1 D') •> (OLD) (DEP (REPLY DER» (SAY OER) 
8 4 (3 T ») (1 C ') •> (USED) (DEP (ID')) 

(DEP (TEST C1T)) 
IB. (t C ?) •> (OLD) (DEP (REPLY CON» (SAY CON) 
8 ; (3 D ') (1 P ') .> (OLD) (DEP (REPLY PED)) 

(SAY PED) 
8 8 (IP?) .> (USED) (DEP (I C')) 

(DEP (TEST PAX)) 
8 82 (3 0 ') (1 L ') •> (OLD) (D^P (REPLY LEQ)) 

(SAY LEQ) 
8 83 (1 L') •> (OLD) (DEP (REPLY LUO)) (SAY LUQ) 
8 84 (2 E ') (3 N ') (1 B') •> (USED) 

(DEP (I L ')) (DEP (TEST BEK)) 
8 845  (3 L ') (J M ')  .>   (OLD) (DEP (REPLY MOD) 

(SAY MOD 

8 85  (1 M')   ->   (OLD) (DEP (REPLY MAB)) (SAY»'   ,, 
8 88 (3 K ') (J B ■>)  •>   (USED) (DEP (IM')) 

(DEP (TEST BUK)) 

8 89 (1 P')   ->   (OLD) (DEP (REPLY PED)) (SAY PED) 
8 893 (3 J ') (1 N ')   •>   (USED) (DEP (3 D ')) 

(DEP (TEST NOJ)) (DEP(1 P ')) 
8 895 (3 J ') (1 N ')  •>   (USED) (DEP (1 P')) 

(DEP (TEST NOJ)) 

8 9 (1 L ?)   •>   (OLD) (DEP (REPLY LUQ)) (SAY LUO) 
8 95 (1 B')  •>   (USEOXDEPd L')) 

(DEP (TEST BEK)) 

8 98 (1 L')   ->   (OLD) (DEP (REPLY LEO)) (SAY LEO) 
J985 (1 N')   •>   (USED) (DEP (3 0')) 

(DEP (TEST NAD) (DEP (1 L ')) 
d99 (1 N')  ■>   (USED) (DEP (1 L ')) 

(DEP (TEST NAD) 

8 995 (1 M')  .>   (OLD) (DEP (REPLY MOD) (SAY MOD 
8 997 (1 R ')   .>   (USED) (DEP (3 L ')) 

(DEP (TEST REB)) (DEP (I M')) 
8 998 (1 R ')   .>   (USED) (DEP (1 M ')) 

(DEP (TEST REB)) 
9 - (RESP)  •>   (DEP (REPLY ')) (SAY ') 

(ATTEND RESP) 

10 (RESP XJ) - (X2X3 RESP)  .>   (PERCEIVE XI RESP) 
11 (WRONG) (TEST XI) (STIM XI) - (R-GEN)  •> 

(DEP (R-GEN)) 

12 (OLD XI) (R-GEN)  •>   (REP OLD COND) 
(DEP (HOLD XI)) 

13 (USED XI) (USED.) (R-GEN)  •>   (REP USED COND) 
(DEP (HOLD XI)) 

14 (R-GEN) (COND (XI X2 ?)) (XI X2 RESP) ■> 
(REM (XI X2RESP)) 

!5 (XI X2 RESP) (RESP X3) (WRONG K4) - (DONE) 
• >   (COND (XI X2 ')) 

(ACTION (OLD) (DEP (REPLY X3)) (SAY X3)) 
(PROD (SAY X4) (TEST X4)) (DEP (DONE)) 

16 (USED. XI)  ->   (REP USED. COND) 
17 (OLD) (DONE) - (TEST) .>  (REP OLD COND) 
18 (R-GEN)(HOLD (XI X2 '))  •> 

(REM (HOLD (XI X2 '))) (ACTION (DEP (XI X2 '))) 
19 (R-GEN) (XI X- RESP) (STIM X3) (WRONG X4)  •> 

(ACTION (DEP (TEST X3))) 
(ACTION (USED) (DEP (XI X2 '))) 
(PROD (DEP (TEST X3))) (STOP) 

20 (XI X? ') (X^ X4 RESP) (STIM X5) (WRONG X6) 
• >   (COND (XI X2 ')) 

(ACTION (USED) (DEP (X3 X4 ')) (DEP (TEST X5))) 
(PROD (SAY X6)) (STOP) 

1 



APPENDIX V. Trace of Simple Series Completion Production System on ABAB. 
V-l. I 

• memory display pi display 

MEMORY MODE 
1 STM. (READY) 

PS MODE 

1. (READY) (SERIES XI)  •>   (REP READY CONT) 
(OBSERVE XI ') 

2 (READY)  •>  (ATTEND SERIES) 
3. (XI ?)- (LOO ->  (CONDU X4 ?)) 

(ACTION (DEP (NEXT XI))) (PROD END) 
(DEP (LOCXU) 

4 (0X1 ?) ->  (SUCC) 
5 (ERROR) (SERIES XI) (LOC X2) - (X3 ')  •> 

(CLEAR (SERIES XI) (LOC X2)) (DEP (READY)) 
6 (NEXT XI) - (X2')  .>   (SAY XI) 

(DEP (MATCH) (XI '»(STOP) 
7 (NEXT XI) (USED) (ACTION (USED) (DEP (NEXT XI))) 

- (MATCH)  ->   (DEP (MATCH)) 
8. (USED) - (MATCH) - (ERROR)  ->   (DEP (ERROR)) 
9 (USED (XI X2 »)) (NEXT)  ->   (REP USED OLD) 

10 (XI X2 ') (NEXT) - (DONE)  -> 
(REP (XI X2 ') (OLD (XI X2 ?))) (DEP (DONE)) 

11. (OLD (XI X2''))  ->  (REPOLDCOND) 
(DEP (XI X2 ?)) 

12 (NEXT XI) (MATCH) (SERIES X2)  ■> 
(REP (NEXT XI) CONT) (REM (MATCH) (DONE)) 
(PROD (SERIES X2)) 

13 (LOC XI) (NEXT X2) 
(ACTION (USED) (DEP (NEXT X3))) •> (REP XI X3) 
(REP (NEXT X2) CONT 2) (REM (DONE)) 
(PROD (NEXT XI)) 

14 (XI ') (CONT) (X2 ') -> (REP XI (0 XD) 
(REM (CONT)) (ACTION (USED) (DEP (NEXT X2))) 

15 (XI ') (CONT) -> (REP XI (0 XI)) (REM (CONT)) 

»fir» 

2 TRUE IN PS 
OUTPUT FOR (ATTEND SERIES) - (dap MN »b.b)) 

STM (SERIES ABAB) (READY) 

1 TRUE IN PS 
STM (A ') (B ?) (A ') (B ?) (CONT) (SERIES ABAB) 

3 TRUE IN PS 
NOW INSERTING 
(1 X4 ')  ->   (L'EP (NEXT A)) 
ON LINE      16 

STM (LOC A) (A ') (R ?) (A ?) (B ?) (CONT) 
(SERIES ABAB) 

14 TRUE IN PS 

STM: (ACTION (USED) (DEP (NEXT B))) (0 A ') (B ») 
(LOC A) (A ') (B ?) (SERIES ABAB) 

4 TRUE IN PS 
STM (1 A ') (ACTION (USED) (DEP (NEXT B))) (B ?) 

(LOC A) (A ?) (B ?) (SEPIc' fiAB) 

16 TRUE IN PS 
STM (NEXT A) (1 A?) 

(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A) 
(A ') (B ') (SERIES ABAB) 

10 TRUE IN PS 

STM: (DONE) (OLD (1 A ')) (NEXT A) 
(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A) 
(A ') (B ') (SERIES ABAB) 

11 TRUE IN PS 
STM (1 A ') (COND (1 A ?)) (DONE) (NEXT A) 

(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A) 
(A ') (B ') (SERIES ABAB) 

13 TRUE IN PS 
NOW INSERTING 
(1 A ?)   ->   (USED) (DEP (NEXT B)) 
ONLINE   155 

STM  (LOC B) (CONT) (1 A ?) (B ?) (A ') (B ?) 
(SERIES ABAB) 

14 TRUE IN PS 

STM  (ACTION (USED) (DEP (NEXT A))) (0 B ?) (A ?) 
(LOC B) (1 A ') (B ?) (SERIES ABAB) 

4 TRUE IN PS 

STM  (IB') (ACTION (USED) (DEP (NEXT A))) (A ?) 
(LOC B) (2 A ?) (B ?) (SERIES ABAB) 

16 TRUE IN PS 
STM: (NEXT A) (1 B?) 

(ACTION (USED) (DEP (NEXT A))) (A ?) (LOC B) 
(2 A ?) (B ?) (SERIES ABAB) 

10 TRUE IN PS 
STM: (DONE) (OLD (1 B ?)) (NEXT A) 

(ACTION (USED) (DEP (NEXT A))) (A ?) (LOC B) 
(2 A ') (B ') (SERIES ABAB) 

11 TRUE IN PS 
STM (IB') (COND (IB')) (DONE) (NEXT A) 

(ACTION (USED) (DEP (NEXT A») (A ?) (LOC B) 
(2 A ') (B ?) (SERIES ABAB) 

13 TRUE IN PS 
NOW INSERTING 
(IB?)   ->   (USED) (DEP (NEXT A)) 
ONLINE   153 

STM: (LOC A) (CONT) (1 B ?) (A ?) (2 A ?) (B ?) 
(SERIES ABAB) 

14 TRUE IN PS 
STM (ACTION (USED) (DEP (NEXT B))) (0 A ?) (B ?) 

(LOC A) (1 B ?) (2 A ?) (SERIES ABAB) 

4 TRUE IN PS 
STM (1 A ') (ACTION (USED) (DEP (NEXT B))) (B ?) 

(LOC A) (2 B ?) (3 A ') (SERIES ABAB) 

15 5 TRUE IN PS 
STM (NEXT B) (USED (1 A ')) 

(ACTION (USED) (DEP (NEXT B))) (B ») (LOC A) 
(2 B ') (3 A ?) (SERIES ABAB) 

7 TRUE IN PS 
STM  (MATCH) (NEXT B) (USED (1 A ?)) 

(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A) 
(2 B ') (3 A ') (SERIES ABAB) 

9 TRUE IN PS 



V-2. 

STM (OLD (1 A ')) (NEXT B) (MATCH) 
(ACTION (USED) (OEP (NEXT B))) (B ') (LOC A) 
(2B ')(3A?)(SERI£S ABAB) 

10 TRUE IN PS 

STM (DONE) (OLD (2 B ')) (NEXT B) (OLD (1 A ')) 
(MATCH) (ACTION (USED) (OEP (NEXT B))) (B ') 
(LOC A) (3 A ') (SERIES ABAB) 

11 TRUE IN PS 
STM  (2 B ») (COND (2 B ')) (DONE; (NEXT B) 

(OLD (1 A ')) (MATCH) 

(ACTION (USED) (DEP (NEXT B))) (B ') (LOC A) 
(3 A ») (SERIES ABAB) 

11 TRUE IN PS 

STM  (l A ') (COND (1 A ')) (2 8 ') (COND (2 B »)) 
(DONE)(NEXT B) (MATCH) 
(ACTION (USED) (DEP (NEXT B))) (B ') (LOC A) 
(3 A ') (SERIES ABAB) 

12 TRUE IN PS 

STM  (CONT) (SERIES ABABV (l A ') (2 B ') (B ') 
(LOC A) (3 A ') 

11 TRUE IN PS 
STM (IB') (COND (1 B »)) (2 A ') (COND (2 A »)) 

(DONE) (NEXT A) (A ') (MATCH) (SERIES ABAB) 
(3 B ') (LOC A) (4 A ') 

12 TRUE IN PS 
STM (CONT) (SERIES ABAB) (1 8 ') (2 A ?) (A ») 

(3 B ') (LOC A) (4 A ») 

15 TRUE IN PS 

STM (0 A ') (SERIES ABAB) (1 B ') (2 A ?) (3 8 ') 
(LOC A) (4 A ') 

4 TRUE IN PS 
STM (I A ') (SERIES ABAB) (2 8 ') (3 A ') (4 B ') 

(LOC A) (5 A ') 

16 5 TRUE IN PS 

STM  (NEXT B) (USED (1 A ')) (SERIES ABAB) (2 8 ') 
(3 A ') (4 8 ') (LOC A) (5 A ») 

6 TRUE IN PS 

15 TRUE IN PS 

STM (0 8 ') (SERIES ABAB) (1 A ') (2 8 ') (LOC A) 
(3 A ') 

4 TRUE IN PS 

STM (18 ') (SERIES ABAB) (2 A ') (3 B ') (LOC A) 
(4 A ') 

STM  (B ») (MATCH) (NEXT 8) (USED (1 A ?)) 
(SERIES ABAB) (2 8 ') (3 A ') (4 8 ') (LOC A) 
(5 A ') 

15 3 TRUE IN PS 

STM (NEXT A) (USED (I 8 ')) (SERIES ABAB) (2 A ') 
(3 8 ') (LOC A) (4 A ') 

6 TRUE IN PS 

STM  (A ') (MATCH) (NEXT A) (USEL (1 8 ')) 
(SERIES ABAB) (2 A ') (3 8 ') (LOC A) (4 A ') 

• display  15-16 

15 (XI ») (CONT)  ->   (REP XI (0 XI)) (REM (CONT)) 
15 3 (1 B »)  .>   (USED) (DEP (NEXT A)) 
1L5 (1 A »)  .>   (USED) (DEP (NEXT 8)) 

16 (1 X4')  .>   (DEP (NEXT A)) 

• fir« 

9 TRUE IN PS 
STM  (OLD (1 B ')) (NEXT A) (A ') (MATCH; 

(SERIES ABAB) (2 A ') (3 8 ') (LOC A) (4 A ') 

10 TRUE IN PS 

STM (DONE) (OLD (2 A ')) (NEXT A) (OLD (18')) 
(A ') (MATCH) (SERIES ABAB) (3 B ') (LOC A) 
(4 A ') 

11 TRUE IN PS 

STM  (2 A ') (COND (2 A ')) (OCNE) (NEXT A) 
(OLD (IB')) (A ') (MATCH) (SERIES ABAB) 
(3 8 ') (LOC A) (4 A ») 



APPENDIX VI. Trace of Simple Series Completion Production System on ABAACAABA.   VI-1, 

•memory display pi duplay 
MEMORV MODE 

1. SIM ■ (READY) 

PS MODE 
I (REP READY CONT) 

2 
3 

4 
5 

(READY) (SERIES XI) 
(OBSERVE XI ?) 
(READY)  .>  (ATTEND SERIES) 
(XI ?)- (LOG) ->  (CONDU X4?)) 
(ACTION (DEP (NEXT Xi») (PROD END) 
(DEP (LOG XI)) 
(0X1 ')  .>   (SUCC) 
(ERROR) (SERIES XI) (LOG X2) - (X3 ')  •> 
(GLEAR (SERIES XI) (LOG X2)) (DEP (READY)) 
(NEXT XI)- (X2»)  •>   (SAY XI) 
(DEP (MATGH) (XI ')) (STOP) 
(NEXT XI) (USED) (AGTION (USED) (DEP (NEXT XI))) 
- (MATGH)  •>   (DEP (MATCH)) 
(USED) - (MATCH) - (ERROR)  •>  (DEP (ERROR)) 
(USED (XI X2 ')) (NEXT) .>  (REP USED OLD) 
(XI X2 ») (NEXT) - (DONE) •> 

(REP (XI X2 ») (OLD (XI X2 ?))) (DEP (DONE» 
11 (OLD (XI X2 '))  •>   (REP OLD COND) 

(DEP (XI X2 ?)) 
12 (NEXT XI) (MATCH) (SERIES X2) •> 

(REP (NEXT XI) CONT) (REM (MATCH) (DONE)) 
(PROD (SERIES X2)) 

13 (LOG XI) (NEXT X2) 
(AGTION (USED) (DEP (NEXT X3))) ■> (REP XI X3) 
(REP (NEXT X2) CONT 1) (REM (DONE)) 
(PROD (NEXT XI)) 

14 (XI ?) (CONT) (X2 ?) •> (REP XI (0 XD) 
(REM (CONT)) (ACTION (USED) (DEP (NEXT X2))) 

15. (XI ?) (CONT)  .>   (REP XI (0 XI)) (REM (CONT)) 

8 
9 

10 

(I A ?) (2 G ?)   •>   (USED) (DEP (NEXT A)) 
ON LINE IMt 

14 4 15 1 9 9 10 11 11 11 13 
NOW INSERTING 
(I A ?) (2 A ?) (3 G ?) ■>  (USED) (DEP (NEXT B)) 
ON LINE 1502 

14 4 153 7 9 10 11 11 12 154 5 1 14 4 155 7 9 11 
10 11 12 14 4 153 7 9 10 11 11 12 14 4 i52 7 9 9 10 
11 11 11 12 14 4 151 7 99 10 11 11 II 12 14 4 1505 
7 9 10 11 11 12 14 4 1503 7 9 9 10 11 11 11 12 14 4 
1502 7 9 9 9 10 11 II 11 H 12 14 4 1537 9 10 11 11 
12 15 4 152 6 

A 

• display 15-16 
15 (XI ?) (CONT)  •>  (REP XI (0 XD) (REM (CONT)) 

1502 (1 A ?) (2 A ?) (3 C ?)  ->  (USED) 
(DEP (NEXT B)) 

15 03 (1 A ?) (2 G ?)  •>  (USED) (DEP (NEXT A)) 
1505 (1 G ?)  ->  (USED) (DEP (NEXT A)) 
15 1  (1 A ?) (2 A ?) ->  (USED) (DEP (NEXT C)) 
15.2. (1 A ?) (2 B ?)  ->   (USED) (DEP (NEXT A» 
15 3 (IB?)   ->   (USED) (DEP (NEXT A)) 
15.5 (1 A ?)  •>   (USED) (DEP (NEXT B» 

16. (1 X4')   ->   (DEP (NEXT A)) 

«fire 
9 9 10 11 11 11 12 154 151 6 

• fira 

9 9 10 11 U 11 12 15 4 1505 6 

• fir« 
2 

OUTPUT hOR (ATTEND SERIES) 
1 3 

NOW INSERTING 
(1 X4 ')  .>   (DEP (NEXT A)) 
ON LINE      16 
144 16 10 11 13 

NOW INSERTING 
(1 A ?)  ->   (USED) (DEP (NEXT B)) 
ON LINE   155 
144 16 10 11 13 

NOW INSERTING 
(IB?)   ->   (USED) (DEP (NEXT A)) 
ON LINE   153 

14 4 155 8 9 10 11 U 13 
NOW INSERTING 
(1 A ?) (2 B ?)  ->  (USED) (DEP (NEXT A)) 
ONLINE   15 2 

14 4 155 9 10 11 11 13 
NOW INSERTING 
(1 A ?) (2 A ?)  •>  (USED) (DEP (NEXT O) 
ONLINE   15 1 
144 16 10 11 13 

NOW INSERTING 
(1 G ?)  •>   (USED) (DEP (NEXT A)) 
ON LINE 1505 

14 4 155 9 10 11 11 13 
NOW INSERTING 

(dep (series tbaactaba)) 



APPtNÜIX VII Trace of Complex Series Completion Production Syst em. VI1-1, 

• memory display pg display 
MEMORY MODE 

1  STM .(READY) 

PS MODE 
1 (READY) (SERIES XI)  ->   (REP READY CONT) 

(DEP (PNUM 2) (COUNTS 0)) (OBSERVES XI ') 
2 (READY)  ->   (ATTEND SERIES) (DEP (PERIOD 1)) 
3 (COUNT) (COUNTS XI)  .>   (REM (COUNT» 

(REP XI XT) 
4 (0X1 ')  .>   (SUCC) 
5 (FAIL) (PERIOD XI) (SERIES X2)  .>   (ERASE) 

(CLEAR) (DEP (READY) (PERIOD XT) (SERIES X2)) 
6 (PERIOD XI) (COUNTS XT) (SERIES X2)  •> 

(ERASE) (CLEAR) 
(DEP (READY) (PERIOD XT) (SERIES X2)) 

7 (NEXT XO-(X2')-(ACTION)   •>   (SAY XI) 
(DEP (MATCH) (XI ')) (STOP) 

8 (NEXT XI) (USED) (ACTION (USED) (DEP (NEXT XI))) 
- (MATCH) - (ERROR)  •>   (DEP (MATCH)) 

9 (XI X2 ') (NEXT) - (DONE)  •> 
(DEP (OLD (XI X2 '))) (DEP (DONE» 

10 (USED (XI X2»)>  •>   (REP USED OLD) 
(DEP (XI X2 ')) 

11 (0LD(X1 X2'))  ->   (REPOLDCOND) 
12 (MATCH) (NEXT XI) (SERIES X2) (LOC X3)  .> 

(REP (NEXT XI) CONT 2) 
(REM (MATCH) (DONE) (LOC X3)) (PROD (SERIES X2)) 

13 (LOC XI) (NEXT X2) (PERIOO X3) (SERIES X4) 
(COUNTS X5)  ->   (REM (LOC XI) (DONE) (ERROR» 
(REP (NEXT X2) CONT) (PRODS (LOC XI) X3 X4 X5) 

14 (CONT) (XI ') (PNUM X2) (X3 ')  -> 
(REP XI (0 XI) 2) (REP X2 X2• 3) (REM (CONT)) 
(ACTION (USED) (DEP (NEXT X3)) (DEP (LOC X2))) 

15 (CONT) (XI ')   ->   (REP XI (0X1)2) 
(REM (CONT)) 

16 (1 XI ')   •>   (DEP (NEXT XI) (LOC I)) 

• fir» 
2 

OUTPUT FOR (ATTEND SERIES) . (dap (senaa edcdcd» 
1  14 4 16 9 11 13 

NOW INSERTING 
(1 XI »)  .>   (USED) (DEP (NEXT XT» (DEP (LOC 2» 
ONLINE   15 5 
3 144 155 9 10 11 11 13 

NOW INSERTING 
(2 XI ') (| X2 ') .>  (USED) (DEP (NEXT C» (DEP (LOC 3)) 
ONLINE   15 3 
5 1  14 4 16 9 11 13 

NOW IN<;,rRTING 
(1 XI ')   .>   (USED) (DEP (NEXT D» (DEP (LOC 2)) (DEP (ERROR)) 
ON LINE   155 

14 4 155 9 10 11 11 13 
NOW INSERTING 
(2 XI ') (i X2 ') ->  (USED) (DEP (NEXT XI)) (DEP (LOC 3» 
ONLINE   15 3 

3 14 4 153 8 9 10 10 11 II 11 12 14 4 153 8 9 10 10 M 
U  II 12 14 4 153 8 9 10 10 11 11 II 12 |5 4 153 7 

C 

•fir« 
9 10 

0 

•display 15-16 
15 (CONT) (XI ') 

(REM (CONT)) 
153 (2 XI ') (| X2 ')  -> 

(DEP (LOC 3)) 
155 (I XI »)  .>   (USED) (DEP (NEXT D» 

(DEP (LOC 2)) (DEP (ERROR)) 
16 (1X1 »)   ->   (DEP (NEXT XI) (LOC 1» 

(REP XI (0X1)2) 

(USED) (DEP (NEXT Xl» 

10 11 II I) 12 154 1537 

• memory dioplay ps display 
MEMORY MODE 

1  STM.(READY) 

PS MODE 
1 (READY) (SERIES XI)  •>   (REP READY CONT) 

(DEP (PNUM 2) (COUNTS 0)) (OBSERVES XI fl 
2 (READY)   .>   (ATTEND SERIES) (DEP (PERIOO D) 
3 (COUNT) (COUNTS XI)  .>   (REM (COUNT)) 

(REP XI XT) 
4 (0 XI ')   .>   (SUCC) 
5 (FAIL) (PERIOD XI) (SERIES X2)  •>   (ERASE) 

(CLEAR) (DEP (READY) (PERIOD XT) (SERIES X2)) 
6 (PERIOD XI) (COUNTS XT) (SERIES X2)  •> 

(ERASE) (CLEAR) 
(DEP (READY) (PERIOD XT) (SERIES X2)) 

7 (NEXT XI) - (X2')-'ACTION)  .>   (SAY XI) 
(DEP (MATCH) (XI ')) (jTOP) 
(NEXT XI) (USED) (ACTION (USED) (DEP (NEXT Xl») 
- (MATCH) - (ERROR)  •>   (DEP (MATCH)) 
(XI X2 ') (NEXT) - (DONE)  •> 
(DEP (OLD (XI X2'))) (DEP (DONE)) 
(USED (XI X2 '))  •>  (REP USED OLD) 

(DEP (XI X2 ')) 
(OLD (X) X2 '))  ->   (REP OLD COND) 

12 (MATCH) (NEXT XI) (SERIES X2) (LOC X3)  •> 
(REP (NEXT XI) CONT 2) 
(REM (MATCH) (DONE) (LOC X3» (PROD (SERIES X2)) 

13 (LOC XI) (NEXT X2) (PERIOD X3) (SERIES X4) 
(COUNTS X5)  ->   (REM (LOC XI) (DONE) (ERROR» 
(REP (NEXT X2) CONT) (PRODS (LOC XI) X3 X4 X5) 

14 (CONT) (XI ') (PNUM X2) (X3 ?)  -> 
(REP XI (0 XI) 2) (REP X2 X2, 3) (REM (CONT)) 
(ACTION (USED) (DEP (NEXT X3)) (DEP (LOC X2))) 

15 (CONT) (XI ')  .>   (REP XI (0 XI) 2) 
(REM (CONT)) 

16 (1 XI ')  .>   (DEP (NEXT XI) (LOC 1» 

• fire 
2 

OUTPUT FOR (ATTEND SERIES) • (dap (..,«. abmcdmef» 
1  14 4 16 9 II  13 

NOW INSERTING 
(1 XI ')  .>   (USED) (DEP (NEXT XD) (DEP (LOC 2» 
ONLINE   155 
3 14 4 155 9 10 II  II  13 

8 

9 

10 

1 



vri-2, 

NOW INSERTING 
(2 XI ?) (I X2 ?)  •>   (USED) (DEP (NEXT M)) (DEP (LOC 3» 
ON LINE   153 
5 1 144 16 9 11 13 

NOW INSERTING 
(1 XI ')  ->   (USED) (DEP (NEXT B)) (DEP (LOC 2» (DEP (ERROR)) 
ON LINE   155 

14 4 155 9 10 11 11 13 
NOW INSERTING 
(2 XI ?) (1 X2 ?)  ->   (USED) (DEP (NEXT M)) (DEP (LOC 3)) 
ON LINE   15.3 
5 1 144 16 9 11 13 

NOW INSERTING 
(1X1?)  ->   (USED) (DEP (NEXT B)) (DEP (LOC 2)) (DEP (ERROR)) 
ON LINE   155 

14 4 155 9 10 11 11 13 
NOW INSERTING 
(2 XI ?) (1 X2 ?)  ->  (USED) (DEP (NEXT M)) (DEP (LOC 3» (DEP (ERROR)) 
ONLINE   153 
144 1539 10 10 11 11 11 13 

NOW INSERTING 
(3 XI ?) (2 X2 ?) (1 X3 ?)  ->  (USED) (DEP (NEXT XI")) (DEP (LOC 4» 
ONLINE   152 
3 14 4 152 8 9 10 10 10 11 11 11 11 12 14 4 15 2 9 10 10 10 11 11 11 11 13 

NOW INSERTING 
(4 XI ?) (3 M ?) (2 X3 ?) (1 Xl" »)  ->   (USED) (DEP (NEXT M» (DEP (LOC 6)) 
ON LINE   15 1 

3 14 4 152 8 9 10 10 10 11 11 U 11 12 14 4 152 8 9 10 10 10 11 11 11 
11  12 154 151 7 

M 

•fir« 
9 10 10 10 10 11 11 |1 11 11 12 154 1527 

G 

• fir« 
9 10 10 10 11 11 11 11 12 154 152 7 

H 

•display 15-16 
15 (CONT) (XI ?) ->  (REP XI (0 XI) 2) 

(REM (CONT)) 
15.1  (4 XI ?) (3 M ■>) (2 X3 ') (1 Xl" ?)  •>   (USED) 

(DEP (NEXT M)) (DEP (LOC 6)) 
15.2. (3X1?) (2 X2 ') (1 X3 ?)  •>  (USED) 

(DEP (NEXT Xl")) (DEP (LOC 4)) 
15 3. (2 XI ') (1 X2 ?)  .>   (USED) (DEP (NEXT M)) 

(DEP (LOC 3)) (DEP (ERROR)) 
15 5 (1X1?)  •>   (USED) (DEP (NEXT B)) 

(DEP (LOC 2» (DEP (ERROR)) 
16 (1 XI ?)  .>   (DEP (NEXT XI) (LOC D) 


